These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 418809)

  • 41. Energy transfer processes in Gloeobacter violaceus PCC 7421 that possesses phycobilisomes with a unique morphology.
    Yokono M; Akimoto S; Koyama K; Tsuchiya T; Mimuro M
    Biochim Biophys Acta; 2008 Jan; 1777(1):55-65. PubMed ID: 18039461
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Changes in cyclic and respiratory electron transport by the movement of phycobilisomes in the cyanobacterium Synechocystis sp. strain PCC 6803.
    Ma W; Ogawa T; Shen Y; Mi H
    Biochim Biophys Acta; 2007 Jun; 1767(6):742-9. PubMed ID: 17336920
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Protein phosphorylation and control of excitation energy transfer in photosynthetic purple bacteria and cyanobacteria.
    Allen JF; Harrison MA; Holmes NG
    Biochimie; 1989; 71(9-10):1021-8. PubMed ID: 2512993
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Direct single-molecule measurements of phycocyanobilin photophysics in monomeric C-phycocyanin.
    Squires AH; Moerner WE
    Proc Natl Acad Sci U S A; 2017 Sep; 114(37):9779-9784. PubMed ID: 28847963
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Dark and photo-induced changes in absorption and fluorescence spectra of phycobilisomes in the presence of dithionite].
    Bekasova OD; Bukhov NG; Karapetian NV
    Biokhimiia; 1981 Feb; 46(2):287-95. PubMed ID: 6788100
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Light-dependent reversal of dark-chilling induced changes in chloroplast structure and arrangement of chlorophyll-protein complexes in bean thylakoid membranes.
    Garstka M; Drozak A; Rosiak M; Venema JH; Kierdaszuk B; Simeonova E; van Hasselt PR; Dobrucki J; Mostowska A
    Biochim Biophys Acta; 2005 Nov; 1710(1):13-23. PubMed ID: 16209864
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A M(r) 95,000 polypeptide in Porphyridium cruentum phycobilisomes and thylakoids: Possible function in linkage of phycobilisomes to thylakoids and in energy transfer.
    Redlinger T; Gantt E
    Proc Natl Acad Sci U S A; 1982 Sep; 79(18):5542-6. PubMed ID: 16593227
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phycobilisomes from the mutant cyanobacterium Synechocystis sp. PCC 6803 missing chromophore domain of ApcE.
    Elanskaya IV; Zlenko DV; Lukashev EP; Suzina NE; Kononova IA; Stadnichuk IN
    Biochim Biophys Acta Bioenerg; 2018 Apr; 1859(4):280-291. PubMed ID: 29391123
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Energy migration in phycobilisomes].
    Sineshchekov VA; Muslimov IA; Bekasova OD
    Mol Biol (Mosk); 1984; 18(2):447-56. PubMed ID: 6425643
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transfer of the excitation energy in Anacystis nidulans grown to obtain different pigment ratios.
    Ghosh AK; Govindjee
    Biophys J; 1966 Sep; 6(5):611-9. PubMed ID: 5970565
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fluorescence from sensitizing phycobilin chromophores in the blue-green alga Anacystis nidulans.
    Csatorday K
    Biochim Biophys Acta; 1978 Nov; 504(2):341-3. PubMed ID: 102340
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spontaneous pigment mutants of Anacystis nidulans selected by growth under far-red light.
    Myers J; Graham JR; Wang RT
    Arch Microbiol; 1980 Feb; 124(2-3):143-8. PubMed ID: 6768347
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Photosynthetic acclimation of the filamentous cyanobacterium, Plectonema boryanum UTEX 485, to temperature and light.
    Miƛkiewicz E; Ivanov AG; Williams JP; Khan MU; Falk S; Huner NP
    Plant Cell Physiol; 2000 Jun; 41(6):767-75. PubMed ID: 10945347
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Photoacoustic spectroscopy of Anacystis nidulans. II. Characterization of pigment holochroms and thermal deactivation spectrum.
    Carpentier R; Larue B; Leblanc RM
    Arch Biochem Biophys; 1983 Apr; 222(2):411-5. PubMed ID: 6405696
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Light-induced energy dissipation in iron-starved cyanobacteria: roles of OCP and IsiA proteins.
    Wilson A; Boulay C; Wilde A; Kerfeld CA; Kirilovsky D
    Plant Cell; 2007 Feb; 19(2):656-72. PubMed ID: 17307930
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Detection of chlorophyllide in chlorophyll-free plasma membrane preparations from Anacystis nidulans.
    Hinterstoisser B; Missbichler A; Pineau B; Peschek GA
    Biochem Biophys Res Commun; 1988 Aug; 154(3):839-46. PubMed ID: 3136769
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Control of excitation transfer in photosynthesis. I. Light-induced change of chlorophyll a fluorescence in Porphyridium cruentum.
    Murata N
    Biochim Biophys Acta; 1969 Feb; 172(2):242-51. PubMed ID: 5775694
    [No Abstract]   [Full Text] [Related]  

  • 58. Low-temperature (4-77 degrees K) spectroscopy of Anacystis: temperature dependence of energy transfer efficiency.
    Cho F; Govindjee
    Biochim Biophys Acta; 1970 Aug; 216(1):151-61. PubMed ID: 4993243
    [No Abstract]   [Full Text] [Related]  

  • 59. Low-temperature fluorescence emission and excitation spectra for Anacystis nidulans.
    Bergeron JA; Olson JM
    Biochim Biophys Acta; 1967 Mar; 131(2):401-4. PubMed ID: 6049491
    [No Abstract]   [Full Text] [Related]  

  • 60. Changes in phycocyanin-carotenoid association during nitrate starvation of Anacystis nidulans.
    Szalontai B; Csatorday K
    Biochem Biophys Res Commun; 1979 Jun; 88(4):1294-200. PubMed ID: 113004
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.