These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 418812)
41. 1H NMR study of an ethidium dimer poly(dA-dT) complex: evidence of a transition between bis and monointercalation. Delbarre A; Gourevitch MI; Gaugain B; Le Pecq JB; Roques BP Nucleic Acids Res; 1983 Jul; 11(13):4467-82. PubMed ID: 6866771 [TBL] [Abstract][Full Text] [Related]
42. Quantitation of the common components of deoxyribonucleic acids by mass spectrometry: application to the analysis of DNAs of unusual composition. Hawley DM; Wiebers JL Nucleic Acids Res; 1978 Dec; 5(12):4949-56. PubMed ID: 106367 [TBL] [Abstract][Full Text] [Related]
43. Qualitative changes in DNA indicating differential DNA replication during early embryogenesis of the newt Triturus vulgaris. Lohmann K; Schubert L J Embryol Exp Morphol; 1980 Jun; 57():61-70. PubMed ID: 7430936 [TBL] [Abstract][Full Text] [Related]
44. Hyperfine structure in melting profile of bacteriophage lambda DNA. Gotoh O; Husimi Y; Yabuki S; Wada A Biopolymers; 1976 Apr; 15(4):655-70. PubMed ID: 1252601 [No Abstract] [Full Text] [Related]
45. Interaction of oxidized polyamines with DNA. I. Evidence for the formation of cross-links. Bachrach R; Eilon G Biochim Biophys Acta; 1967 Sep; 145(2):418-26. PubMed ID: 6064634 [No Abstract] [Full Text] [Related]
46. Raman spectroscopy of DNA-metal complexes. II. The thermal denaturation of DNA in the presence of Sr2+, Ba2+, Mg2+, Ca2+, Mn2+, Co2+, Ni2+, and Cd2+. Duguid JG; Bloomfield VA; Benevides JM; Thomas GJ Biophys J; 1995 Dec; 69(6):2623-41. PubMed ID: 8599669 [TBL] [Abstract][Full Text] [Related]
47. Application of higher derivative techniques to analysis of high-resolution thermal denaturation profiles of reassociated repetitive DNA. Cuellar RE; Ford GA; Briggs WR; Thompson WF Proc Natl Acad Sci U S A; 1978 Dec; 75(12):6026-30. PubMed ID: 366608 [TBL] [Abstract][Full Text] [Related]
48. [Molecular melting of DNA and the effect of the fine structure of fusion curves]. Lazurkin IuS Mol Biol (Mosk); 1977; 11(6):1311-24. PubMed ID: 377064 [TBL] [Abstract][Full Text] [Related]
49. Determination of melting temperature and temperature melting range for DNA with multi-peak differential melting curves. Lando DY; Fridman AS; Chang CL; Grigoryan IE; Galyuk EN; Murashko ON; Chen CC; Hu CK Anal Biochem; 2015 Jun; 479():28-36. PubMed ID: 25640587 [TBL] [Abstract][Full Text] [Related]
50. [Preparation of molecules combining phage lambda and Bacillus subtilis DNAs by the sticky end addition method]. Dubinin NP; Sliusarenko AG; Kapelinskaia TV; Boguspaev KK; Gorodetskiĭ SI Dokl Akad Nauk SSSR; 1976; 230(3):729-32. PubMed ID: 824113 [No Abstract] [Full Text] [Related]
51. A chemical and physical method for determining the complete base composition of plant DNA. Kemp JD; Sutton DW Biochim Biophys Acta; 1976 Mar; 425(2):148-56. PubMed ID: 1252497 [TBL] [Abstract][Full Text] [Related]
52. Complete disproportionation of duplex poly(dT)*poly(dA) into triplex poly(dT)*poly(dA)*poly(dT) and poly(dA) by coralyne. Polak M; Hud NV Nucleic Acids Res; 2002 Feb; 30(4):983-92. PubMed ID: 11842110 [TBL] [Abstract][Full Text] [Related]
53. A new method of characterizing the primary structure of DNA: the use of a polynomial for describing the tendencies of the distribution of pyrimidine blocks of different lengths in DNA. Mazin AL Mol Biol; 1972; 6(4):435-43. PubMed ID: 4573033 [No Abstract] [Full Text] [Related]
54. The fractionation of calf thymus DNA by multiple formation of sedimentable complexes with homologous lysine-rich histone KAP. Derivative melting curves and ultracentrifugation in CsCl concentration gradients. Plucienniczak A; Bartkowiak J; Krzywiec A; Panusz H Nucleic Acids Res; 1974 Dec; 1(12):1675-90. PubMed ID: 4476072 [TBL] [Abstract][Full Text] [Related]
55. Biochemical properties of oligo [(+)-carbocyclic-thymidylates] and their complexes. Sági J; Szemzõ A; Szécsi J; Otvös L Nucleic Acids Res; 1990 Apr; 18(8):2133-40. PubMed ID: 2159640 [TBL] [Abstract][Full Text] [Related]
56. Separation and properties of DNA polymerases from developing rat brain. Chiu JF; Sung SC Biochim Biophys Acta; 1971 Aug; 246(1):44-50. PubMed ID: 4941749 [No Abstract] [Full Text] [Related]
57. [Chemical and physico-chemical properties of the DNA of Newcastle group bacteriophages]. Sorochkina VV; Khromov IS; Parfenov NN; Zamchuk LA; Nigmatullin TG Vopr Virusol; 1981; (1):97-100. PubMed ID: 7257328 [TBL] [Abstract][Full Text] [Related]
58. Synergistic effects in the melting of DNA hydration shell: melting of the minor groove hydration spine in poly(dA).poly(dT) and its effect on base pair stability. Chen YZ; Prohofsky EW Biophys J; 1993 May; 64(5):1385-93. PubMed ID: 8324179 [TBL] [Abstract][Full Text] [Related]
59. DEOXYRIBONUCLEIC ACIDS. KIT S Annu Rev Biochem; 1963; 32():43-82. PubMed ID: 14144486 [No Abstract] [Full Text] [Related]
60. Different binding modes of spermine to A-T and G-C base pairs modulate the bending and stiffening of the DNA double helix. Marquet R; Houssier C J Biomol Struct Dyn; 1988 Oct; 6(2):235-46. PubMed ID: 3271522 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]