These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 4196330)

  • 41. The arrangement of dopamine beta-hydroxylase (EC 1.14.2.1) and chromomembrin B in the membrane of chromatin granules.
    König P; Hörtnagl H; Kostron H; Sapinsky H; Winkler H
    J Neurochem; 1976 Dec; 27(6):1539-41. PubMed ID: 1003230
    [No Abstract]   [Full Text] [Related]  

  • 42. Plasma dopamine-beta-hydroxylase activity and catecholamine levels in anesthetized dogs following acute hemorrhage.
    Perry LB; Weinshilboum RM; Theye RA
    Anesthesiology; 1975 Nov; 43(5):518-24. PubMed ID: 1190521
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Regulation of the chromaffin granule catecholamine transporter in cultured bovine adrenal medullary cells: stimulus-biosynthesis coupling.
    Desnos C; Laran MP; Scherman D
    J Neurochem; 1992 Dec; 59(6):2105-12. PubMed ID: 1279122
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Monensin-induced influx of 22Na and the release of catecholamines in cultured bovine adrenal medulla cells and isolated chromaffin granules.
    Izumi F; Wada A; Yanagihara N; Kobayashi H; Toyohira Y
    Biochem Pharmacol; 1986 Sep; 35(17):2937-40. PubMed ID: 3741482
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Catecholamines are present in a synaptic-like microvesicle-enriched fraction from bovine adrenal medulla.
    Annaert WG; Llona I; Backer AC; Jacob WA; De Potter WP
    J Neurochem; 1993 May; 60(5):1746-54. PubMed ID: 8473893
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Calcium-dependence of catecholamine release from bovine adrenal medullary cells after exposure to intense electric fields.
    Knight DE; Baker PF
    J Membr Biol; 1982; 68(2):107-40. PubMed ID: 6809949
    [No Abstract]   [Full Text] [Related]  

  • 47. All-or-none secretion of adrenal medullary storage vesicle contents in the rat.
    Slotkin TA; Kirshner N
    Biochem Pharmacol; 1973 Jan; 22(2):205-19. PubMed ID: 4763252
    [No Abstract]   [Full Text] [Related]  

  • 48. Molecular organization of amine storage organelles of blood platelets and adrenal medulla.
    Pletscher A; Da Prada M; Berneis KH; Steffen H; Lütold B; Weder HG
    Adv Cytopharmacol; 1974; 2():257-64. PubMed ID: 4440558
    [No Abstract]   [Full Text] [Related]  

  • 49. Characterization of catecholamine-storage organelles in transplantable phaeochromocytoma and adrenal glands of rats.
    Oberlechner E; Westhead E; Neuman B; Schmidt W; Fischer-Colbrie R; Weber A; Sperk G; Winkler H
    J Neurochem; 1982 Mar; 38(3):615-24. PubMed ID: 7057181
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Absence of dopamine-beta-hydroxylase in some catecholamine-containing sympathetic ganglion cells of the dog: evidence for dopaminergic autonomic neurones.
    Bell C; Muller BD
    Neurosci Lett; 1982 Jul; 31(1):31-5. PubMed ID: 7121895
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biochemical and morphological studies on catecholamine storage in human phaeochromocytoma.
    Blaschko H; Jerrome DW; Robb-Smith AH; Smith AD; Winkler H
    Clin Sci; 1968 Jun; 34(3):453-65. PubMed ID: 5662588
    [No Abstract]   [Full Text] [Related]  

  • 52. CATECHOL AMINE METABOLISM AND STORAGE GRANULES IN PHEOCHROMOCYTOMA AND NEUROBLASTOMA.
    PAGE LB; JACOBY GA
    Medicine (Baltimore); 1964 May; 43():379-86. PubMed ID: 14168747
    [No Abstract]   [Full Text] [Related]  

  • 53. Small noradrenergic storage vesicles isolated from rat vas deferens--biochemical and morphological characterization.
    Fried G
    Acta Physiol Scand Suppl; 1980; 493():1-28. PubMed ID: 6941628
    [No Abstract]   [Full Text] [Related]  

  • 54. Formation in vitro of matrix-like aggregates of chromogranins and phospholipids derived from chromaffin granules of the bovine adrenal medulla.
    Helle KB
    Biochim Biophys Acta; 1973 Aug; 318(2):181-96. PubMed ID: 4795650
    [No Abstract]   [Full Text] [Related]  

  • 55. Effects of calcium and limited proteolysis on membrane-bound and releasable dopamine beta-hydroxylase in adrenomedullary catecholamine granules.
    Helle KB; Pihl KE; Serck-Hanssen G
    Acta Physiol Scand; 1985 Nov; 125(3):423-7. PubMed ID: 3909741
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Seasonal changes in the activity of the adrenal medulla of Viscacha (Lagostomus maximus maximus).
    Rodriguez H; Filippa VP; Penissi A; Fogal T; Domínguez S; Piezzi RS; Scardapane L
    Anat Rec (Hoboken); 2013 Jul; 296(7):1089-95. PubMed ID: 23630194
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Brief and repeated noise exposure produces different morphological and biochemical effects in noradrenaline and adrenaline cells of adrenal medulla.
    Gesi M; Lenzi P; Alessandri MG; Ferrucci M; Fornai F; Paparelli A
    J Anat; 2002 Feb; 200(Pt 2):159-68. PubMed ID: 11895114
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effect of sodium and calcium ions on the release of catecholamines from the adrenal medulla: sodium deprivation induces release by exocytosis in the absence of extracellular calcium.
    Lastowecka A; Trifaró JM
    J Physiol; 1974 Feb; 236(3):681-705. PubMed ID: 4207131
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Early increase in adrenomedullary catecholamine synthesis in sinoaortic denervated rats.
    Saavedra JM; Krieger EM
    J Auton Nerv Syst; 1987 Feb; 18(2):181-3. PubMed ID: 2883211
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Correlative light-, fluorescence- and electron-microscopic studies of catecholamine-storing cells in the adrenal medulla of the domestic fowl.
    Chungsamarnyart N; Fujioka T; Kitoh J
    Cell Tissue Res; 1981; 217(3):471-7. PubMed ID: 7249049
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.