These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 4196862)

  • 41. Metabolic pathways in Tetrahymena: distribution of carbon label by reactions of the tricarboxylic acid and glyoxalate cycles in normal and desmethylimipramine-treated cells.
    Connett RJ; Blum JJ
    Biochemistry; 1971 Aug; 10(17):3299-309. PubMed ID: 5000878
    [No Abstract]   [Full Text] [Related]  

  • 42. The effect of emetine on macromolecular synthesis in synchronized tetrahymena pyriformis.
    Cashman TM; Conklin KA; Chou SC
    Experientia; 1972 May; 28(5):520-1. PubMed ID: 4625198
    [No Abstract]   [Full Text] [Related]  

  • 43. Studies on the biosynthesis of glucolipid in Tetrahymena pyriformis.
    Keenan RW; Matula JM; Holloman L
    Biochim Biophys Acta; 1973 Oct; 326(1):84-92. PubMed ID: 4202033
    [No Abstract]   [Full Text] [Related]  

  • 44. Metabolic pathways in Tetrahymena. Estimation of rates of the tricarboxylic acid cycle, glyoxylate cycle, lipid synthesis, and related pathways by use of multiple labeled substrates.
    Connett RJ; Blum JJ
    J Biol Chem; 1972 Aug; 247(16):5199-209. PubMed ID: 4626917
    [No Abstract]   [Full Text] [Related]  

  • 45. Mechanism of synchrony induction. 3. Changes of water-soluble and water-insoluble protein fractions involved in synchronous rounding in Tetrahymena pyriformis.
    Watanabe Y
    Exp Cell Res; 1971 Dec; 69(2):324-8. PubMed ID: 5005916
    [No Abstract]   [Full Text] [Related]  

  • 46. [Use of the carbon radioactive isotope C 14 for determining the energy transfer effectiveness in the food chain: glucose-Azotobacter agile-Tetrahymena pyriformis].
    Fischer E
    Dokl Akad Nauk SSSR; 1971 Aug; 199(4):940-3. PubMed ID: 5001149
    [No Abstract]   [Full Text] [Related]  

  • 47. Quantitative analysis of intermediary metabolism in Tetrahymena pyriformis. Cells kept under static conditions for four hours after growth in glucose-supplemented medium.
    Stein RB; Blum JJ
    J Biol Chem; 1981 Mar; 256(6):2752-60. PubMed ID: 6782096
    [No Abstract]   [Full Text] [Related]  

  • 48. Mechanism of synchrony induction. II. Synthesis and turnover of biomolecules in the induction process of synchronous rounding in Tetrahymena pyriformis.
    Watanabe T
    Exp Cell Res; 1971 Oct; 68(2):437-41. PubMed ID: 5001379
    [No Abstract]   [Full Text] [Related]  

  • 49. Effect of iron on lipid metabolism of Tetrahymena pyriformis.
    Peng YM; Elson CE
    J Nutr; 1971 Sep; 101(9):1177-84. PubMed ID: 4999498
    [No Abstract]   [Full Text] [Related]  

  • 50. Requirements for DNA replication preceding cell division in Tetrahymena pyriformis.
    Andersen HA
    Exp Cell Res; 1972 Nov; 75(1):89-94. PubMed ID: 4629008
    [No Abstract]   [Full Text] [Related]  

  • 51. Phenylalanine hydroxylase: absolute configuration and source of oxygen of the 4a-hydroxytetrahydropterin species.
    Dix TA; Bollag GE; Domanico PL; Benkovic SJ
    Biochemistry; 1985 Jun; 24(12):2955-8. PubMed ID: 4016080
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Localization of some enzymes of beta-oxidation of fatty acids in the peroxisomes of Tetrahymena.
    Blum JJ
    J Protozool; 1973 Nov; 20(5):688-92. PubMed ID: 4202834
    [No Abstract]   [Full Text] [Related]  

  • 53. Formation of meta-tyrosine form L-phenylalanine by beef adrenal medulla. A new biosynthetic route to catecholamines.
    Tong JH; D'Iorio A; Benoiton NL
    Biochem Biophys Res Commun; 1971 Jul; 44(1):229-36. PubMed ID: 4398955
    [No Abstract]   [Full Text] [Related]  

  • 54. Change in catecholamine content of Tetrahymena pyriformis W during growth.
    Iwata H; Kariya K
    Jpn J Pharmacol; 1973 Oct; 23(5):751-2. PubMed ID: 4203214
    [No Abstract]   [Full Text] [Related]  

  • 55. [Metabolism of poly A+ mRNA during the development of Tetrahymena pyriformis cultures (proceedings)].
    Soares MC; Rondinelli E; de Castro JF; de Castro FT
    An Acad Bras Cienc; 1978 Mar; 50(1):116. PubMed ID: 96714
    [No Abstract]   [Full Text] [Related]  

  • 56. On the role of food vacuole formation in the uptake of dissolved nutrients by Tetrahymena.
    Rasmussen L
    Exp Cell Res; 1973 Nov; 82(1):192-6. PubMed ID: 4356487
    [No Abstract]   [Full Text] [Related]  

  • 57. Biosynthesis of pteridines and of phenylalanine hydroxylase cofactor in cell-free extracts of Pseudomonas species (ATCC 11299a).
    Guroff G; Strenkoski CA
    J Biol Chem; 1966 May; 241(10):2220-7. PubMed ID: 5911609
    [No Abstract]   [Full Text] [Related]  

  • 58. Effect of AMP and related compounds on glycogen content of Tetrahymena.
    Blum JJ
    J Cell Physiol; 1972 Dec; 80(3):443-52. PubMed ID: 4630641
    [No Abstract]   [Full Text] [Related]  

  • 59. Compartmentation of glutamate metabolism in the developing brain: experiments with labelled glucose, acetate, phenylalanine, tyrosine and proline.
    Van den Berg CJ
    J Neurochem; 1970 Jul; 17(7):973-83. PubMed ID: 5426684
    [No Abstract]   [Full Text] [Related]  

  • 60. EVIDENCE FOR THE SYNTHESIS OF THE "DIVISION PROTEIN" IN TETRAHYMENA PYRIFORMIS.
    WATANABE Y; IKEDA M
    Exp Cell Res; 1965 May; 38():432-4. PubMed ID: 14284523
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.