These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 4197066)

  • 1. EDTA prevents the photocatalyzed destruction of the products of catecholamine oxidation.
    Karasawa T; Funakoshi H; Furukawa K; Yoshida K
    Anal Biochem; 1973 May; 53(1):278-81. PubMed ID: 4197066
    [No Abstract]   [Full Text] [Related]  

  • 2. Interaction of serotonin with the catecholamines. I. Inhibition of dopamine and norepinephrine oxidation.
    Vander Wende C; Johnson JC
    Biochem Pharmacol; 1970 Jun; 19(6):1991-2000. PubMed ID: 4998462
    [No Abstract]   [Full Text] [Related]  

  • 3. On the importance of the N-5 position in flavin coenzymes. Properties of free and protein-bound 5-deaza analogs.
    Edmondson DE; Barman B; Tollin G
    Biochemistry; 1972 Mar; 11(7):1133-8. PubMed ID: 4622351
    [No Abstract]   [Full Text] [Related]  

  • 4. THE INVOLVEMENT OF SULFHYDRYL SITES IN DOPAMINE-BETA-HYDROXYLASE ACTIVITY.
    GOLDSTEIN M; MCKEREGHAN MR; LAUBER E
    Biochim Biophys Acta; 1963 Sep; 77():161-4. PubMed ID: 14078965
    [No Abstract]   [Full Text] [Related]  

  • 5. The fluorometric assay of catecholamines and related compounds: improvements and extensions to the hydroxyindole technique.
    Laverty R; Taylor KM
    Anal Biochem; 1968 Feb; 22(2):269-79. PubMed ID: 4868086
    [No Abstract]   [Full Text] [Related]  

  • 6. Kinetic studies of the reduction of ferricytochrome c by Fe(EDTA)2-.
    Hodges HL; Holwerda RA; Gray HB
    J Am Chem Soc; 1974 May; 96(10):3132-7. PubMed ID: 4364803
    [No Abstract]   [Full Text] [Related]  

  • 7. Titrimetric determination of catecholamines and related compounds via bromine oxidation and substitution.
    Amin D
    Analyst; 1986 Feb; 111(2):255-7. PubMed ID: 3706765
    [No Abstract]   [Full Text] [Related]  

  • 8. Catecholamine oxidation and ionization properties indicated from the H+ release, tritium exchange, and spectral changes which occur during ferricyanide oxidation.
    Harrison WH; Whisler WW; Hill BJ
    Biochemistry; 1968 Sep; 7(9):3089-94. PubMed ID: 5684336
    [No Abstract]   [Full Text] [Related]  

  • 9. Formation of diastereoisomeric 3a-hydroxypyrroloindoles from a tryptophan residue analog mediated by iron (II)-EDTA and L-ascorbate.
    Uchida K; Enomoto N; Itakura K; Kawakishi S
    Arch Biochem Biophys; 1990 May; 279(1):14-20. PubMed ID: 2110800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of iron-stimulated catecholamine degradation by the iron-chelators DETAPAC and Desferal. Potentially useful laboratory agents.
    Heikkila RE; Cabbat FS
    Biochem Pharmacol; 1981 Nov; 30(21):2945-7. PubMed ID: 6797434
    [No Abstract]   [Full Text] [Related]  

  • 11. Concurrent reduction of iodine and oxidation of EDTA at the active site of horseradish peroxidase: probing the iodine binding site by optical difference spectroscopy and steady state kinetic analysis for the formation of active enzyme-I(+)-EDTA ternary complex for iodine reductase activity.
    Adak S; Bhattacharyya DK; Mazumder A; Bandyopadhyay U; Banerjee RK
    Biochemistry; 1995 Oct; 34(40):12998-3006. PubMed ID: 7548058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A reliable and simple method for simultaneous determination of DOPA and 3-O-methyldopa in plasma and brain.
    Fahn S; Prasad AL; Delesie R
    Anal Biochem; 1972 Apr; 46(2):557-75. PubMed ID: 4337048
    [No Abstract]   [Full Text] [Related]  

  • 13. Destruction of EDTA using Ce(IV) mediated electrochemical oxidation: a simple modeling study and experimental verification.
    Lee JW; Chung SJ; Balaji S; Kokovkin VV; Moon IS
    Chemosphere; 2007 Jun; 68(6):1067-73. PubMed ID: 17363029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoregulated transmembrane charge separation by linked spiropyran-anthraquinone molecules.
    Zhu L; Khairutdinov RF; Cape JL; Hurst JK
    J Am Chem Soc; 2006 Jan; 128(3):825-35. PubMed ID: 16417372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of peroxidase in catalyzing oxidation of polyphenols.
    Bayse GS; Morrison M
    Biochim Biophys Acta; 1971 Jul; 244(1):77-84. PubMed ID: 5000976
    [No Abstract]   [Full Text] [Related]  

  • 16. EFFECT OF LIGANDS AND OXIDATION STATE UPON THE REACTION OF MYOGLOBIN AND HEMOGLOBIN WITH ZINC.
    CANN JR
    Biochemistry; 1964 Jul; 3():903-8. PubMed ID: 14214076
    [No Abstract]   [Full Text] [Related]  

  • 17. Identification of catecholamine neurotransmitters using fluorescence sensor array.
    Ghasemi F; Hormozi-Nezhad MR; Mahmoudi M
    Anal Chim Acta; 2016 Apr; 917():85-92. PubMed ID: 27026604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of fluorine substitution on the anodic oxidation of catecholamines and amino acids.
    Rice ME; Moghaddam B; Creveling CR; Kirk KL
    Anal Chem; 1987 Jun; 59(11):1534-8. PubMed ID: 3619037
    [No Abstract]   [Full Text] [Related]  

  • 19. Inhibition of catecholamine oxidation by indoles.
    Hartley R; Smith JA
    Biochem Pharmacol; 1972 Aug; 21(15):2007-12. PubMed ID: 4630319
    [No Abstract]   [Full Text] [Related]  

  • 20. Mechanism of photoreduction of thiazine dyes by EDTA studied by flash photolysis III. Consequences of a newly found pKT of thionine on the mechanism in basic solutions.
    Bonneau R; Pereyre J
    Photochem Photobiol; 1975 Mar; 21(3):173-7. PubMed ID: 806084
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.