These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 4198088)

  • 21. [Amino acid analysis in clinical chemistry].
    Niederwieser A; Curtius HC
    Z Klin Chem Klin Biochem; 1970 Sep; 7(5):404-26. PubMed ID: 4990144
    [No Abstract]   [Full Text] [Related]  

  • 22. Regulation of the cytoplasmic pH in Streptococcus faecalis.
    Kobayashi H; Murakami N; Unemoto T
    J Biol Chem; 1982 Nov; 257(22):13246-52. PubMed ID: 6815175
    [No Abstract]   [Full Text] [Related]  

  • 23. Factors involved in the synthesis of cyclopropane fatty acids by Streptococcus faecalis.
    Jungkind DL; Wood RC
    Biochim Biophys Acta; 1974 Feb; 337(2):286-97. PubMed ID: 4215450
    [No Abstract]   [Full Text] [Related]  

  • 24. Transport overshoot during biotin uptake by Saccharomyces cerevisiae.
    Becker JM; Lichstein HC
    Biochim Biophys Acta; 1972 Sep; 282(1):409-20. PubMed ID: 4560821
    [No Abstract]   [Full Text] [Related]  

  • 25. Cation transport and electrogenesis by Streptococcus faecalis. II. Proton and sodium extrusion.
    Harold FM; Papineau D
    J Membr Biol; 1972; 8(1):45-62. PubMed ID: 4263675
    [No Abstract]   [Full Text] [Related]  

  • 26. Asparagine biosynthesis in Lactobacillus arabinosus and its control by asparagine through enzyme inhibition and repression.
    RAVEL JM; NORTON SJ; HUMPHREYS JS; SHIVE W
    J Biol Chem; 1962 Sep; 237():2845-9. PubMed ID: 14490631
    [No Abstract]   [Full Text] [Related]  

  • 27. A transmembrane pH gradient in Streptococcus faecalis: origin, and dissipation by proton conductors and N,N'-dicyclohexylcarbodimide.
    Harold FM; Pavlasová E; Baarda JR
    Biochim Biophys Acta; 1970; 196(2):235-44. PubMed ID: 4244306
    [No Abstract]   [Full Text] [Related]  

  • 28. Role of intestinal microflora in the metabolism of guanidinosuccinic acid.
    Milstien S; Goldman P
    J Bacteriol; 1973 May; 114(2):641-4. PubMed ID: 4196249
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Column chromatographic analysis of neutral and acidic amino acids using lithium buffers.
    Peters JH; Berridge BJ; Cummings JG; Lin SC
    Anal Biochem; 1968 Jun; 23(3):459-65. PubMed ID: 5658105
    [No Abstract]   [Full Text] [Related]  

  • 30. Alpha-methyl-L-glutamic acid uptake by high affinity dicarboxylic amino acid transport system in Streptococcus faecalis.
    Holden JT; Utech NM; Reid KG
    Biochim Biophys Acta; 1975 Jun; 394(1):55-64. PubMed ID: 806303
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transport of lysine and hydroxylysine in Streptococcus faecalis.
    Friede JD; Gilboe DP; Triebwasser KC; Henderson LM
    J Bacteriol; 1972 Jan; 109(1):179-85. PubMed ID: 4621625
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lipoteichoic acids of lactobacilli inhibit Enterococcus faecalis biofilm formation and disrupt the preformed biofilm.
    Jung S; Park OJ; Kim AR; Ahn KB; Lee D; Kum KY; Yun CH; Han SH
    J Microbiol; 2019 Apr; 57(4):310-315. PubMed ID: 30671742
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Letter: Kinetics of energy-dependent exchange of H+ and K+ in Streptococcus faecalis].
    Martirosov SM; Alikhanian MA
    Biofizika; 1974; 19(1):188-90. PubMed ID: 4215465
    [No Abstract]   [Full Text] [Related]  

  • 34. The separation of the ribosomal proteins of Streptococcus fecalis by isoelectric focusing. Amino acid composition of the total ribosomal proteins and of an acidic fraction.
    Brown DG; Baron C; Abrams A
    Biochim Biophys Acta; 1968 Oct; 168(2):386-8. PubMed ID: 4972264
    [No Abstract]   [Full Text] [Related]  

  • 35. Accelerated amino acid analysis: studies on the use of lithium citrate buffers and the effect of n-propanol, in the analysis of physiological fluids and protein hydrolyzates.
    Atkin GE; Ferdinand W
    Anal Biochem; 1970 Dec; 38(2):313-29. PubMed ID: 5493059
    [No Abstract]   [Full Text] [Related]  

  • 36. Mechanisms of azo reduction by Streptococcus faecalis. I. Optimization of assay conditions.
    Walker R; Gingell R; Murrells DF
    Xenobiotica; 1971 May; 1(3):221-9. PubMed ID: 4403481
    [No Abstract]   [Full Text] [Related]  

  • 37. Physiological differences between cyclopropane fatty acid-deficient mutants and the parent strain of Streptococcus faecalis.
    Jungkind DL; Wood RC
    Biochim Biophys Acta; 1974 Feb; 337(2):298-310. PubMed ID: 4215451
    [No Abstract]   [Full Text] [Related]  

  • 38. Aspects of the antibacterial action of diphenyliodonium chloride.
    Gerami-Nejad M; Stretton RJ
    Microbios; 1981; 30(120):97-107. PubMed ID: 6457963
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Catabolism of L-arginine by entrapped cells of Streptococcus faecalis ATCC8043.
    Franks NE
    Biochim Biophys Acta; 1971 Nov; 252(2):246-54. PubMed ID: 5002471
    [No Abstract]   [Full Text] [Related]  

  • 40. Transport of pantothenic acid in Lactobacillus plantarum.
    Germinario RJ; Waller JR
    Can J Microbiol; 1977 Jul; 23(7):922-30. PubMed ID: 18275
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.