These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 419923)

  • 41. Time course of neocortical graft innervation by AChE-positive fibers.
    Clinton RJ; Ebner FF
    J Comp Neurol; 1988 Nov; 277(4):557-77. PubMed ID: 3209746
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Investigations of the origins of transient acetylcholinesterase activity in developing rat visual cortex.
    Robertson RT; Hanes MA; Yu J
    Brain Res; 1988 Jun; 469(1-2):1-23. PubMed ID: 3401792
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Infracortical interstitial cells concurrently expressing m2-muscarinic receptors, acetylcholinesterase and nicotinamide adenine dinucleotide phosphate-diaphorase in the human and monkey cerebral cortex.
    Smiley JF; Levey AI; Mesulam MM
    Neuroscience; 1998 Jun; 84(3):755-69. PubMed ID: 9579781
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Acetylcholinesterase and somatostatin-immunoreactivity coexist in human neocortex.
    Nakamura S; Vincent SR
    Neurosci Lett; 1985 Oct; 61(1-2):183-7. PubMed ID: 2867501
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Cholinergic system enzymes in the F 1 hybrids of mice differing in their capacity for conditioning].
    Mandel P; Ebel A; Hermetet JC; Bovet D; Oliverio A
    C R Acad Hebd Seances Acad Sci D; 1973 Jan; 276(3):395-8. PubMed ID: 4197490
    [No Abstract]   [Full Text] [Related]  

  • 46. Chemoarchitectonics of axonal and perikaryal acetylcholinesterase along information processing systems of the human cerebral cortex.
    Mesulam MM; Geula C
    Brain Res Bull; 1994; 33(2):137-53. PubMed ID: 8275332
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification of acetylcholinesterase-reactive neurons and neuropil in neostriatal transplants.
    Walker PD; Chovanes GI; McAllister JP
    J Comp Neurol; 1987 May; 259(1):1-12. PubMed ID: 3584552
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Curcumin administration suppress acetylcholinesterase gene expression in cadmium treated rats.
    Akinyemi AJ; Oboh G; Fadaka AO; Olatunji BP; Akomolafe S
    Neurotoxicology; 2017 Sep; 62():75-79. PubMed ID: 28527659
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Immunolocalisation of protein phosphatase inhibitor-1 in the cerebral cortex of the rat, cat and ferret.
    Lowenstein PR; Shering AF; MacDougall LK; Cohen P
    Brain Res; 1995 Apr; 676(1):80-92. PubMed ID: 7796181
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cortical cytochrome oxidase activity is reduced in Alzheimer's disease.
    Mutisya EM; Bowling AC; Beal MF
    J Neurochem; 1994 Dec; 63(6):2179-84. PubMed ID: 7964738
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Concurrent acetylcholinesterase staining and gamma-aminobutyric acid uptake of cortical neurons in culture.
    Mesulam MM; Dichter M
    J Histochem Cytochem; 1981 Feb; 29(2):306-8. PubMed ID: 6166656
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Immunohistochemical study of glutaminase-containing neurons in the cerebral cortex and thalamus of the rat.
    Kaneko T; Mizuno N
    J Comp Neurol; 1988 Jan; 267(4):590-602. PubMed ID: 2450108
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nitroxidergic nerve fibers of intracerebral vessels.
    Kotsyuba AE; Kotsyuba EP; Chertok VM
    Neurosci Behav Physiol; 2010 May; 40(4):451-5. PubMed ID: 20339932
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evidence for the neuronal origin of brain capillary acetylcholinesterase activity.
    Karcsú S; Tóth L; Király E; Jancsó G
    Brain Res; 1981 Feb; 206(1):203-7. PubMed ID: 7470887
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influence of basic fibroblast growth factor on the development of cholinoceptive neurons from fetal rat cerebrum in culture.
    Gensburger C; Capo M; Deloulme JC; Sensenbrenner M
    Dev Neurosci; 1992; 14(4):278-81. PubMed ID: 1295749
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Activity of succinate dehydrogenase and acetylcholinesterase in synaptic endings isolated from neuropil and cerebral cortex.
    Lisý V; Kovárů H; Faltin J; Lodin Z
    Physiol Bohemoslov; 1971; 20(3):229-34. PubMed ID: 4330175
    [No Abstract]   [Full Text] [Related]  

  • 57. Optic fiber development between dual transplants of retina and superior colliculus placed in the occipital cortex.
    Matthews MA; West LC
    Anat Embryol (Berl); 1982; 163(4):417-33. PubMed ID: 7091709
    [No Abstract]   [Full Text] [Related]  

  • 58. [Acetylcholinesterase containing neurons in the rat brain after DFP-pretreatment (author's transl)].
    Pfister C; Wenk H; Danner H
    Acta Histochem; 1981; 69(2):176-86. PubMed ID: 6177182
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The activity of ganglioside sialidase in different regions of the human brain.
    Ohman R
    J Neurochem; 1971 Mar; 18(3):531-2. PubMed ID: 5559260
    [No Abstract]   [Full Text] [Related]  

  • 60. Antioxidant and acetylcholinesterase response to repeated malathion exposure in rat cerebral cortex and hippocampus.
    Trevisan R; Uliano-Silva M; Pandolfo P; Franco JL; Brocardo PS; Santos AR; Farina M; Rodrigues AL; Takahashi RN; Dafre AL
    Basic Clin Pharmacol Toxicol; 2008 Apr; 102(4):365-9. PubMed ID: 18341513
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.