BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 4199516)

  • 1. Hydroxamate recognition during iron transport from hydroxamate-ion chelates.
    Haydon AH; Davis WB; Arceneaux JE; Byers BR
    J Bacteriol; 1973 Sep; 115(3):912-8. PubMed ID: 4199516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fate of labeled hydroxamates during iron transport from hydroxamate-ion chelates.
    Arceneaux JE; Davis WB; Downer DN; Haydon AH; Byers BR
    J Bacteriol; 1973 Sep; 115(3):919-27. PubMed ID: 4199517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active transport of iron in Bacillus megaterium: role of secondary hydroxamic acids.
    Davis WB; Byers BR
    J Bacteriol; 1971 Aug; 107(2):491-8. PubMed ID: 5000305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ferric hydroxamate transport without subsequent iron utilization in Bacillus megaterium.
    Arceneaux JE; Byers BR
    J Bacteriol; 1976 Sep; 127(3):1324-30. PubMed ID: 821926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Siderophore-mediated iron uptake in different strains of Anabaena sp.
    Goldman SJ; Lammers PJ; Berman MS; Sanders-Loehr J
    J Bacteriol; 1983 Dec; 156(3):1144-50. PubMed ID: 6227608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron requirements and aluminum sensitivity of an hydroxamic acid-requiring strain of Bacillus megaterium.
    Davis WB; McCauley MJ; Byers BR
    J Bacteriol; 1971 Feb; 105(2):589-94. PubMed ID: 4993339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron-chelating hydroxamic acid (schizokinen) active in initiation of cell division in Bacillus megaterium.
    Byers BR; Powell MV; Lankford CE
    J Bacteriol; 1967 Jan; 93(1):286-94. PubMed ID: 4960152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Divergence of the aerobactin iron uptake systems encoded by plasmids pColV-K30 in Escherichia coli K-12 and pSMN1 in Aerobacter aerogenes 62-1.
    Waters VL; Crosa JH
    J Bacteriol; 1988 Nov; 170(11):5153-60. PubMed ID: 3053646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron transport systems of Serratia marcescens.
    Angerer A; Klupp B; Braun V
    J Bacteriol; 1992 Feb; 174(4):1378-87. PubMed ID: 1531225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specificity of siderophore receptors in membrane vesicles of Bacillus megaterium.
    Aswell JE; Haydon AH; Turner HR; Dawkins CA; Arceneaux JE
    J Bacteriol; 1977 Apr; 130(1):173-80. PubMed ID: 404281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active transport of ferric schizokinen in Anabaena sp.
    Lammers PJ; Sanders-Loehr J
    J Bacteriol; 1982 Jul; 151(1):288-94. PubMed ID: 6806241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-affinity iron uptake systems present in Erwinia carotovora subsp. carotovora include the hydroxamate siderophore aerobactin.
    Ishimaru CA; Loper JE
    J Bacteriol; 1992 May; 174(9):2993-3003. PubMed ID: 1569027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new hydroxamate siderophore for iron supply of Salmonella.
    Rabsch W; Paul P; Reissbrodt R
    Acta Microbiol Hung; 1987; 34(1):85-92. PubMed ID: 2957886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repression of phenolic acid-synthesizing enzymes and its relation to iron uptake in Bacillus subtilis.
    Downer DN; Davis WB; Byers BR
    J Bacteriol; 1970 Jan; 101(1):181-7. PubMed ID: 4983647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic studies on the specificity of chelate-iron uptake in Aspergillus.
    Wiebe C; Winkelmann G
    J Bacteriol; 1975 Sep; 123(3):837-42. PubMed ID: 1099079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and utilization of siderophores by Shigella flexneri.
    Payne SM
    J Bacteriol; 1980 Sep; 143(3):1420-4. PubMed ID: 6447691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and characterization of an iron-regulated gene, chtA, required for the utilization of the xenosiderophores aerobactin, rhizobactin 1021 and schizokinen by Pseudomonas aeruginosa.
    Cuív PÓ; Clarke P; O'Connell M
    Microbiology (Reading); 2006 Apr; 152(Pt 4):945-954. PubMed ID: 16549659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and characterization of a membrane permease involved in iron-hydroxamate transport in Staphylococcus aureus.
    Sebulsky MT; Hohnstein D; Hunter MD; Heinrichs DE
    J Bacteriol; 2000 Aug; 182(16):4394-400. PubMed ID: 10913070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of hydroxamate and phenolate siderophores by Shigella flexneri.
    Payne SM; Niesel DW; Peixotto SS; Lawlor KM
    J Bacteriol; 1983 Sep; 155(3):949-55. PubMed ID: 6224775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of two siderophores produced by Bacillus megaterium: A preliminary investigation into their potential as therapeutic agents.
    Chuljerm H; Deeudom M; Fucharoen S; Mazzacuva F; Hider RC; Srichairatanakool S; Cilibrizzi A
    Biochim Biophys Acta Gen Subj; 2020 Oct; 1864(10):129670. PubMed ID: 32565293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.