These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 4199682)

  • 21. 4-Nitrobenzoic acid reductase of Ascaris lumbricoides var suum. Substrate specificity and reaction products.
    Douch PG
    Xenobiotica; 1975 Jul; 5(7):401-6. PubMed ID: 168691
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetics of in vitro nitro reduction of 2,4-dinitrophenol gy rat liver homogenates.
    Eiseman JL; Gehring PJ; Gibson JE
    Toxicol Appl Pharmacol; 1974 Jan; 27(1):140-4. PubMed ID: 4852620
    [No Abstract]   [Full Text] [Related]  

  • 23. Oxidation of branched chain -ketoacids in Streptococcus faecalis and it's dependence on lipoic acid.
    Rüdiger HW; Langenbeck U; Goedde HW
    Hoppe Seylers Z Physiol Chem; 1972 Jun; 353(6):875-82. PubMed ID: 4626441
    [No Abstract]   [Full Text] [Related]  

  • 24. In vitro metabolic N-oxidation of azo compounds. II. Some factors influencing N-oxidation.
    Koh MH; Gorrod JW
    Drug Metabol Drug Interact; 1989; 7(4):273-85. PubMed ID: 2489198
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nitroreduction of benznidazole and nifurtimox by rat and human feces.
    de Toranzo EG; Masana M; Castro JA
    Res Commun Chem Pathol Pharmacol; 1983 Aug; 41(2):341-4. PubMed ID: 6688884
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Fundamentals of drug metabolism].
    Netter KJ
    Arzneimittelforschung; 1972 Feb; 22(2):285-92. PubMed ID: 4402072
    [No Abstract]   [Full Text] [Related]  

  • 27. Microbial interactions in foods: meats, poultry and dairy products.
    Kraft AA; Oblinger JL; Walker HW; Kawal MC; Moon NJ; Reinbold GW
    Soc Appl Bacteriol Symp Ser; 1976; 4():141-50. PubMed ID: 5780
    [No Abstract]   [Full Text] [Related]  

  • 28. [Studies on the azoreductase activity of supernatants of homogenates of rat liver. II. Comparison with other preparations. Variations with age and the ingestion of dye].
    Manchon P; Lowy R
    Food Cosmet Toxicol; 1965; 3(5):783-7. PubMed ID: 5894937
    [No Abstract]   [Full Text] [Related]  

  • 29. Putrescine carbamoyltransferase (Streptococcus faecalis).
    Stalon V
    Methods Enzymol; 1983; 94():339-43. PubMed ID: 6413820
    [No Abstract]   [Full Text] [Related]  

  • 30. The oxidation and per-oxidation of DPNH2 in extracts of Streptococcus faecalis, 10C1.
    DOLIN MI
    Arch Biochem Biophys; 1953 Oct; 46(2):483-5. PubMed ID: 13092993
    [No Abstract]   [Full Text] [Related]  

  • 31. 1,2-dimethyl-4-(p-carboxyphenylazo)-5-hydroxybenzene. A convenient substrate for the measurement of azo reductase.
    Smith EJ; Van Loon EJ
    Anal Biochem; 1969 Oct; 31(1):315-20. PubMed ID: 5380703
    [No Abstract]   [Full Text] [Related]  

  • 32. Diacetyl oxidation by Streptococcus faecalis, a lipoic acid dependent reaction.
    DOLIN MI
    J Bacteriol; 1955 Jan; 69(1):51-8. PubMed ID: 13233166
    [No Abstract]   [Full Text] [Related]  

  • 33. Serology of strains of Streptococcus faecalis which produce hyaluronidase.
    Rosan B; Williams NB
    Nature; 1966 Dec; 212(5067):1275-6. PubMed ID: 21090479
    [No Abstract]   [Full Text] [Related]  

  • 34. Beta-glucuronidase in the streptococcal groups B and D.
    Röd TO; Haug RH; Mistvedt T
    Acta Pathol Microbiol Scand B Microbiol Immunol; 1974 Aug; 82(4):533-6. PubMed ID: 4212968
    [No Abstract]   [Full Text] [Related]  

  • 35. Influence of the pyruvate oxidation factor on the oxidative metabolism of glucose by Streptococcus faecalis.
    O'KANE DJ
    J Bacteriol; 1950 Oct; 60(4):449-58. PubMed ID: 14784471
    [No Abstract]   [Full Text] [Related]  

  • 36. Substrate non-specificity of Streptococcus faecalis azoreductase.
    Gingell R
    Xenobiotica; 1973 Mar; 3(3):165-9. PubMed ID: 4199682
    [No Abstract]   [Full Text] [Related]  

  • 37. Some molecular parameters influencing rate of reduction of azo compounds by intestinal microflora.
    Walker R; Ryan AJ
    Xenobiotica; 1971; 1(4):483-6. PubMed ID: 5006111
    [No Abstract]   [Full Text] [Related]  

  • 38. Identification of Enterococcus faecalis enzymes with azoreductases and/or nitroreductase activity.
    Chalansonnet V; Mercier C; Orenga S; Gilbert C
    BMC Microbiol; 2017 May; 17(1):126. PubMed ID: 28545445
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of gut flora in the reduction of aromatic nitro-groups.
    Zachariah PK; Juchau MR
    Drug Metab Dispos; 1974; 2(1):74-8. PubMed ID: 4150138
    [No Abstract]   [Full Text] [Related]  

  • 40. Bioreduction of organic nitrogen.
    Mitchard M
    Xenobiotica; 1971; 1(4):469-81. PubMed ID: 4950798
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.