These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 42004)

  • 1. The measurement of intracellular sodium activities in the bullfrog by means of double-barreled sodium liquid ion-exchanger microelectrodes.
    Kotera K; Satake N; Honda M; Fujimoto M
    Membr Biochem; 1979; 2(3-4):323-38. PubMed ID: 42004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A triple-barreled microelectrode for simultaneous measurements of intracellular Na+ and K+ activities and membrane potential in biological cells.
    Fujimoto M; Honda M
    Jpn J Physiol; 1980; 30(6):859-75. PubMed ID: 6973655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical profile for ion transport across the membrane of proximal tubular cells.
    Fujimoto M; Naito K; Kubota T
    Membr Biochem; 1980; 3(1-2):67-97. PubMed ID: 6968864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical profile of K and Cl ions across the proximal tubule of bullfrog kidneys: a study using double-barreled ion-sensitive microelectrodes.
    Fujimoto M; Kubota T; Kotera K
    Contrib Nephrol; 1977; 6():114-23. PubMed ID: 300666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular measurement of Na activity using neutral carrier Na ion-selective microelectrode.
    Kajino K; Fujimoto M
    Jpn J Physiol; 1982; 32(6):997-1001. PubMed ID: 6984868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of cAMP on ion transport in the proximal tubular cells in bullfrog kidney.
    Fujimoto M; Hagiwara N; Kubota T; Kotera K
    Jpn J Physiol; 1988; 38(5):619-41. PubMed ID: 2851674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular potassium activity in mammalian proximal tubule: effect of perturbations in transepithelial sodium transport.
    Laprade R; Lapointe JY; Breton S; Duplain M; Cardinal J
    J Membr Biol; 1991 May; 121(3):249-59. PubMed ID: 1865489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physicochemical properties of a liquid ion exchanger microelectrode and its application to biological fluids.
    Fujimoto M; Kubota T
    Jpn J Physiol; 1976; 26(6):631-50. PubMed ID: 16152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between cytosolic activities of calcium and pH in frog proximal tubules.
    Fujimoto M; Kubota T; Hagiwara N; Kubokawa M; Ohno-Shosaku T; Kotera K
    Jpn J Physiol; 1990; 40(2):273-96. PubMed ID: 2395240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potassium permeability of luminal and peritubular membranes in the proximal tubule of bullfrog kidneys.
    Kubokawa M; Kubota T; Fujimoto M
    Jpn J Physiol; 1990; 40(5):613-34. PubMed ID: 2086984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of intracellular pH of bullfrog skeletal muscle and renal tubular cells with double-barreled antimony microelectrodes.
    Matsumura Y; Kajino K; Fujimoto M
    Membr Biochem; 1980; 3(1-2):99-129. PubMed ID: 6968865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulatory mechanism of cell pH in the renal proximal tubule of bullfrog nephron.
    Matsumura Y; Aoki S; Fujimoto M
    Jpn J Physiol; 1985; 35(5):741-63. PubMed ID: 3001393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Basolateral pH-sensitive K+ channels mediate membrane potential of proximal tubule cells in bullfrog kidney.
    Kubokawa M; Mori Y; Fujimoto K; Kubota T
    Jpn J Physiol; 1998 Feb; 48(1):1-8. PubMed ID: 9538283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of dopamine on the transport of Na, H, and Ca in the bullfrog proximal tubule.
    Hagiwara N; Kubota T; Kubokawa M; Fujimoto M
    Jpn J Physiol; 1990; 40(3):351-68. PubMed ID: 2177119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular potential and K+ activity in rat kidney proximal tubular cells in acidosis and K+ depletion.
    Cemerikić D; Wilcox CS; Giebisch G
    J Membr Biol; 1982; 69(2):159-65. PubMed ID: 7131537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peritubular Na-K exchange ion pump in maleate-treated frog kidney proximal tubular cells.
    Cemerikić D; Filipović D; Milovanović S; Petrović S; Cvetković D
    Comp Biochem Physiol Comp Physiol; 1993 Dec; 106(4):783-92. PubMed ID: 7906636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acid-induced two-step depolarization in the peritubular membrane of bullfrog kidney proximal tubules.
    Kubokawa M; Kubota T; Kotera K; Fujimoto M
    Jpn J Physiol; 1992; 42(3):389-406. PubMed ID: 1434101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular gradients of ion activities in the epithelial cells of the Necturus gallbladder recorded with ion-selective microelectrodes.
    Zeuthen T
    J Membr Biol; 1978 Mar; 39(2-3):185-218. PubMed ID: 641976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seasonal change of membrane potential across the proximal tubular epithelium in bullfrog kidneys.
    Kubota T; Fujimoto M
    Jpn J Physiol; 1978; 28(2):181-96. PubMed ID: 308567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Na+ absorption in Aplysia intestine: Na+ fluxes and intracellular Na+ and K+ activities.
    Gerencser GA
    Am J Physiol; 1983 Mar; 244(3):R412-7. PubMed ID: 6829797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.