These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 4201623)

  • 1. A qualitative demonstration of the degradation of folic acid by Pseudomonas fluorescens UK-1.
    Soini J; Majasaari K
    Acta Chem Scand; 1973; 27(6):2115-20. PubMed ID: 4201623
    [No Abstract]   [Full Text] [Related]  

  • 2. Further studies on the degradation of folic acid in a growing culture of Pseudomonas fluorescens UK-1.
    Soini J; Majasaari K
    Acta Chem Scand; 1973 Oct; 27(10):3611-5. PubMed ID: 4131561
    [No Abstract]   [Full Text] [Related]  

  • 3. [Metabolic behavior of uniformly labelled C14-glutamate and 4-aminobutyrate U-C14 in Pseudomonas fluorescens].
    Ortiz JM; Cascales M; Santos-Ruiz A
    Ann Pharm Fr; 1972 May; 30(5):329-38. PubMed ID: 4627958
    [No Abstract]   [Full Text] [Related]  

  • 4. The replacement of phosphatidylethanolamine and acidic phospholipids by an ornithine-amide lipid and a minor phosphorus-free lipid in Pseudomonas fluorescens NCMB 129.
    Minnikin DE; Abdolrahimzadeh H
    FEBS Lett; 1974 Aug; 43(3):257-60. PubMed ID: 4213476
    [No Abstract]   [Full Text] [Related]  

  • 5. Mixed carbon source effect in the phenazine-alpha-carboxylic acid synthesis and the aromatic pathway in Pseudomonas spp.
    Korth H
    Arch Microbiol; 1974 May; 97(3):245-52. PubMed ID: 4211209
    [No Abstract]   [Full Text] [Related]  

  • 6. The enzymatic hydrolysis of methotrexate and folic acid.
    Levy CC; Goldman P
    J Biol Chem; 1967 Jun; 242(12):2933-8. PubMed ID: 6027254
    [No Abstract]   [Full Text] [Related]  

  • 7. Methionine degradation by Pseudomonas fluorescens UK1 and its methionine-utilizing mutant.
    Laakso S; Söderling E; Nurmikko V
    J Gen Microbiol; 1976 Jun; 94(2):305-12. PubMed ID: 820833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water relations of solute accumulation in Pseudomonas fluorescens.
    Prior BA; Kenyon CP; van der Veen M; Mildenhall JP
    J Appl Bacteriol; 1987 Feb; 62(2):119-28. PubMed ID: 2883169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Isolation of uvitonic acid from the culture medium of Pseudomonas roseus fluorescens].
    Pouteau-Thouvenot M; Padikkala J; Barbier M
    Biochimie; 1972; 54(1):115-6. PubMed ID: 4631225
    [No Abstract]   [Full Text] [Related]  

  • 10. Cesium stress and adaptation in Pseudomonas fluorescens.
    Appanna VD; Gazsó LG; Huang J; St Pierre M
    Bull Environ Contam Toxicol; 1996 May; 56(5):833-8. PubMed ID: 8661869
    [No Abstract]   [Full Text] [Related]  

  • 11. The role of multivalent cations in the uptake and oxidation of glucose by Pseudomonas fluorescens.
    Walker CA; Durham NN
    Biochem J; 1973 Oct; 136(2):429-31. PubMed ID: 4204323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of chromium detoxification in Pseudomonas fluorescens is dependent on iron.
    Appanna VD; Gazsó LG; Huang J; St Pierre M
    Bull Environ Contam Toxicol; 1996 Dec; 57(6):875-80. PubMed ID: 8875833
    [No Abstract]   [Full Text] [Related]  

  • 13. [Mechanism of glucose oxydation by a strain of Pseudomonas fluorescens (type R). II. Influence of Fe3+ ions on glucose dehydrogenase activity].
    Wurtz B
    C R Seances Soc Biol Fil; 1973; 167(12):1960-64. PubMed ID: 4213924
    [No Abstract]   [Full Text] [Related]  

  • 14. Bioaccumulation of yttrium in Pseudomonas fluorescens.
    Appanna VD; Huang J
    Bull Environ Contam Toxicol; 1992 Oct; 49(4):620-5. PubMed ID: 1421858
    [No Abstract]   [Full Text] [Related]  

  • 15. Automatic formation of hypotheses on the relationships between structure of naphthalene analogs and bioluminescence response of bioreporter Pseudomonas fluorescens HK44.
    Trögl J; Hálová J; Kuncová G; Pařík P
    Folia Microbiol (Praha); 2010 Sep; 55(5):411-7. PubMed ID: 20941573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Formation of gallic acid from quinic acid by Enterobacter cloacae and Pseudomonas fluorescens].
    Korth H
    Arch Mikrobiol; 1973; 89(1):67-72. PubMed ID: 4632608
    [No Abstract]   [Full Text] [Related]  

  • 17. Conversion of L-hydroxyproline to glutamate by extracts of strains of Pseudomonas convexa and Pseudomonas fluorescens.
    Thacker RP
    Arch Mikrobiol; 1969; 64(3):235-8. PubMed ID: 5766672
    [No Abstract]   [Full Text] [Related]  

  • 18. Exocellular and intracellular accumulation of lead in Pseudomonas fluorescens ATCC 13525 is mediated by the phosphate content of the growth medium.
    al-Aoukaty A; Appanna VD; Huang J
    FEMS Microbiol Lett; 1991 Oct; 67(3):283-90. PubMed ID: 1769535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decreased chromate uptake in Pseudomonas fluorescens carrying a chromate resistance plasmid.
    Ohtake H; Cervantes C; Silver S
    J Bacteriol; 1987 Aug; 169(8):3853-6. PubMed ID: 3112130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on the degradation of pterine and pterine-6-carboxylic acid by Pseudomonas fluorescens UK-1.
    Soini J; Backman A
    Acta Chem Scand B; 1975; 29(6):710-4. PubMed ID: 811029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.