These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 4202781)
1. Control of metabolite secretion in Bacillus subtilis. Speck EL; Freese E J Gen Microbiol; 1973 Oct; 78(2):261-75. PubMed ID: 4202781 [No Abstract] [Full Text] [Related]
2. The regulation of the butanediol cycle in Bacillus subtilis. López J; Fortinagel P Biochim Biophys Acta; 1972 Oct; 279(3):554-60. PubMed ID: 4628298 [No Abstract] [Full Text] [Related]
3. Mutants of Bacillus subtilis blocked in acetoin reductase. López J; Thoms B; Fortnagel P Eur J Biochem; 1973 Dec; 40(2):479-83. PubMed ID: 4205556 [No Abstract] [Full Text] [Related]
4. [Biochemistry and genetics of organic acid transport in bacteria]. Gershanovich VN Usp Sovrem Biol; 1975; 79(1):21-32. PubMed ID: 804772 [No Abstract] [Full Text] [Related]
5. Indentification of a pH 6.5 acetohydroxyacid synthetase in Bacillus subtilis. Holtzclaw WD; Chapman LF Arch Microbiol; 1974 Mar; 96(3):267-70. PubMed ID: 4209299 [No Abstract] [Full Text] [Related]
6. The oxidation of acetoin to CO 2 in intact animals and in liver mince preparation. Gabriel MA; Ilbawi M; al-Khalidi UA Comp Biochem Physiol B; 1972 Mar; 41(3):493-502. PubMed ID: 5029485 [No Abstract] [Full Text] [Related]
7. Effect of growth substrate on enzymes of the citric and glyoxylic acid cycles in Thiobacillus novellus. Charles AM Can J Microbiol; 1971 May; 17(5):617-24. PubMed ID: 5087888 [No Abstract] [Full Text] [Related]
8. The reduction of diacetyl and acetoin in Aerobacter aerogenes. Evidence for one enzyme catalyzing both reactions. Bryn K; Hetland O; Stormer FC Eur J Biochem; 1971 Jan; 18(1):116-9. PubMed ID: 5540507 [No Abstract] [Full Text] [Related]
9. Role of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, and malic enzyme during growth and sporulation of Bacillus subtilis. Diesterhaft MD; Freese E J Biol Chem; 1973 Sep; 248(17):6062-70. PubMed ID: 4146915 [No Abstract] [Full Text] [Related]
10. Comparative aspects of fatty acid synthesis in Bacillus subtilis and Escherichia coli. Butterworth PH; Bloch K Eur J Biochem; 1970 Feb; 12(3):496-501. PubMed ID: 4392505 [No Abstract] [Full Text] [Related]
11. [Study of metabolism of glycerol by two mutants of Bacillus subtilis]. Saheb SA Can J Microbiol; 1972 Aug; 18(8):1315-25. PubMed ID: 4626435 [No Abstract] [Full Text] [Related]
12. Coenzyme specificity of dehydrogenases and fermentation of pyruvate by clostridia. von Hugo H; Schoberth S; Madan VK; Gottschalk G Arch Mikrobiol; 1972; 87(3):189-202. PubMed ID: 4404815 [No Abstract] [Full Text] [Related]
18. Acetolactate synthase from Bacillus subtilis serves as a 2-ketoisovalerate decarboxylase for isobutanol biosynthesis in Escherichia coli. Atsumi S; Li Z; Liao JC Appl Environ Microbiol; 2009 Oct; 75(19):6306-11. PubMed ID: 19684168 [TBL] [Abstract][Full Text] [Related]
19. The role of aminoacetone in L-threonine metabolism by Bacillus subtilis. Rahhal DA; Turner JM; Willetts AJ Biochem J; 1967 Jun; 103(3):73P. PubMed ID: 4292837 [No Abstract] [Full Text] [Related]
20. Bacillus subtilis YvrK is an acid-induced oxalate decarboxylase. Tanner A; Bornemann S J Bacteriol; 2000 Sep; 182(18):5271-3. PubMed ID: 10960116 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]