BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

42 related articles for article (PubMed ID: 420292)

  • 1. Reprogramming of Energy Metabolism in Kidney Disease.
    Singh P
    Nephron; 2023; 147(1):61-64. PubMed ID: 36063803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolomic profiling can predict which humans will develop liver dysfunction when deprived of dietary choline.
    Sha W; da Costa KA; Fischer LM; Milburn MV; Lawton KA; Berger A; Jia W; Zeisel SH
    FASEB J; 2010 Aug; 24(8):2962-75. PubMed ID: 20371621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disposition of quinapril and quinaprilat in the isolated perfused rat kidney.
    Kugler AR; Olson SC; Smith DE
    J Pharmacokinet Biopharm; 1995 Jun; 23(3):287-305. PubMed ID: 8834197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Luminal transport system for choline+ in relation to the other organic cation transport systems in the rat proximal tubule. Kinetics, specificity: alkyl/arylamines, alkylamines with OH, O, SH, NH2, ROCO, RSCO and H2PO4-groups, methylaminostyryl, rhodamine, acridine, phenanthrene and cyanine compounds.
    Ullrich KJ; Rumrich G
    Pflugers Arch; 1996 Jul; 432(3):471-85. PubMed ID: 8766007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A choline transporter in renal brush-border membrane vesicles: energetics and structural specificity.
    Wright SH; Wunz TM; Wunz TP
    J Membr Biol; 1992 Feb; 126(1):51-65. PubMed ID: 1593612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological evaluation of the isolated perfused rat kidney.
    Maack T
    Am J Physiol; 1980 Feb; 238(2):F71-8. PubMed ID: 6987899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of plasma choline by the renal tubule: bidirectional transport of choline.
    Acara M; Rennick B
    Am J Physiol; 1973 Nov; 225(5):1123-8. PubMed ID: 4745210
    [No Abstract]   [Full Text] [Related]  

  • 8. Distal tubular function in superficial rat tubules during volume expansion.
    Diezi J; Nenniger M; Giebisch G
    Am J Physiol; 1980 Sep; 239(3):F228-32. PubMed ID: 7435562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of tubular reabsorbate on efferent vessel plasma composition.
    Weinstein SW; Bank N; Klose R; Szyjewicz J
    Am J Physiol; 1979 Feb; 236(2):F119-25. PubMed ID: 420293
    [No Abstract]   [Full Text] [Related]  

  • 10. Effects of flow rate and potassium intake on distal tubular potassium transfer.
    Khuri RN; Strieder WN; Giebisch G
    Am J Physiol; 1975 Apr; 228(4):1249-61. PubMed ID: 1130523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurotensin metabolism in the kidney: role of tubular fluid.
    Bjerke T; Christensen EI; Boye N
    Contrib Nephrol; 1988; 68():92-7. PubMed ID: 3234003
    [No Abstract]   [Full Text] [Related]  

  • 12. Bidirectional renal tubular transport of free choline: a micropuncture study.
    Acara M; Roch-Ramel F; Rennick B
    Am J Physiol; 1979 Feb; 236(2):F112-8. PubMed ID: 420292
    [No Abstract]   [Full Text] [Related]  

  • 13. Renal tubular control of potassium transport.
    Giebisch G
    Klin Wochenschr; 1979 Oct; 57(19):1001-8. PubMed ID: 392174
    [No Abstract]   [Full Text] [Related]  

  • 14.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 15.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.