These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 4204272)

  • 21. A kinetic model of cooperativity in aspartate transcarbamylase.
    Dembo M; Rubinow SI
    Biophys J; 1977 Jun; 18(3):245-67. PubMed ID: 329911
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Yolk sac fluid and yolk sac membrane enzymes in the marsupial, Macropus eugenii.
    Renfree MB
    Comp Biochem Physiol B; 1974 Oct; 49(2):273-9. PubMed ID: 4417314
    [No Abstract]   [Full Text] [Related]  

  • 23. Three-dimensional structure of carbamoyl phosphate and succinate bound to aspartate carbamoyltransferase.
    Gouaux JE; Lipscomb WN
    Proc Natl Acad Sci U S A; 1988 Jun; 85(12):4205-8. PubMed ID: 3380787
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aspartate carbamyltransferase (Streptococcus faecalis).
    Chang TY; Prescott LM; Jones ME
    Methods Enzymol; 1978; 51():41-50. PubMed ID: 99635
    [No Abstract]   [Full Text] [Related]  

  • 25. Local and gross conformational changes in aspartate transcarbamylase.
    Kirschner MW; Schachman HK
    Biochemistry; 1973 Jul; 12(16):2997-3004. PubMed ID: 4730496
    [No Abstract]   [Full Text] [Related]  

  • 26. A unifying concept for the active site region in aspartate transcarbamylase.
    Heyde E
    Biochim Biophys Acta; 1976 Nov; 452(1):81-8. PubMed ID: 825145
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Streptococcus faecalis aspartate transcarbamylase. I. Purification and general properties.
    Prescott LM; Jones ME
    Biochemistry; 1970 Sep; 9(19):3783-94. PubMed ID: 4994329
    [No Abstract]   [Full Text] [Related]  

  • 28. Structural and regulatory mutations allowing utilization of citrulline or carbamoylaspartate as a source of carbamoylphosphate in Escherichia coli K-12.
    Legrain C; Stalon V; Glansdorff N; Gigot D; PiƩard A; Crabeel M
    J Bacteriol; 1976 Oct; 128(1):39-48. PubMed ID: 789342
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aspartate transcarbamylase. A study of possible roles for the sulfhydryl group at the active site.
    Jacobson GR; Stark GR
    J Biol Chem; 1973 Dec; 248(23):8003-14. PubMed ID: 4584821
    [No Abstract]   [Full Text] [Related]  

  • 30. T-state inhibitors of E. coli aspartate transcarbamoylase that prevent the allosteric transition.
    Heng S; Stieglitz KA; Eldo J; Xia J; Cardia JP; Kantrowitz ER
    Biochemistry; 2006 Aug; 45(33):10062-71. PubMed ID: 16906764
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ornithine transcarbamylase: steady-state kinetic properties.
    Kurtin WE; Bishop SH; Himoe A
    Biochem Biophys Res Commun; 1971 Oct; 45(2):551-6. PubMed ID: 5003693
    [No Abstract]   [Full Text] [Related]  

  • 32. Bohr effect in Escherichia coli aspartate transcarbamylase. Linkages between substrate binding, proton binding, and conformational transitions.
    Allwell NM; Hofmann GE; Zaug A; Lennick M
    Biochemistry; 1979 Jul; 18(14):3008-15. PubMed ID: 37893
    [No Abstract]   [Full Text] [Related]  

  • 33. Structure and properties of the putrescine carbamoyltransferase of Streptococcus faecalis.
    Wargnies B; Lauwers N; Stalon V
    Eur J Biochem; 1979 Nov; 101(1):143-52. PubMed ID: 116850
    [TBL] [Abstract][Full Text] [Related]  

  • 34. N-(phosphonacetyl)-L-aspartate, a potent transition state analog inhibitor of aspartate transcarbamylase, blocks proliferation of mammalian cells in culture.
    Swyryd EA; Seaver SS; Stark GR
    J Biol Chem; 1974 Nov; 249(21):6945-50. PubMed ID: 4371054
    [No Abstract]   [Full Text] [Related]  

  • 35. Thermodynamic approaches to understanding aspartate transcarbamylase.
    Allewell NM; LiCata VJ
    Methods Enzymol; 1995; 259():608-28. PubMed ID: 8538475
    [No Abstract]   [Full Text] [Related]  

  • 36. Wheat-germ aspartate transcarbamoylase. Steady-state kinetics and stereochemistry of the binding site for L-aspartate.
    Grayson JE; Yon RJ; Butterworth PJ
    Biochem J; 1979 Nov; 183(2):247-54. PubMed ID: 534495
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Citrulline synthesis in rat tissues and liver content of carbamoyl phosphate and ornithine.
    Raijman L
    Biochem J; 1974 Feb; 138(2):225-32. PubMed ID: 4822731
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Studies on channeling of carbamoyl-phosphate in the multienzyme complex that initiates pyrimidine biosynthesis in rat ascites hepatoma cells.
    Otsuki T; Mori M; Tatibana M
    J Biochem; 1982 Nov; 92(5):1431-7. PubMed ID: 6130083
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ornithine transcarbamylase from Streptococcus faecalis and bovine liver. 3. Effects of chemical modifications of specific residues on ligand binding and enzymatic activity.
    Marshall M; Cohen PP
    J Biol Chem; 1972 Mar; 247(6):1669-82. PubMed ID: 4622305
    [No Abstract]   [Full Text] [Related]  

  • 40. Active site-directed and allosteric effectors of regulatory enzymes: the activation of aspartate transcarbamylase by substrate and transition state analogues.
    Smith GD
    J Theor Biol; 1977 Nov; 69(2):275-85. PubMed ID: 592876
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.