These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 4204905)

  • 41. Nucleic acid synthesis and ribonucleic acid polymerase specificity in germinating and outgrowing spores of Bacillus subtilis.
    Buu A; Sonenshein AL
    J Bacteriol; 1975 Oct; 124(1):190-200. PubMed ID: 809414
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Template specificity changes of DNA-dependent RNA polymerase in B. subtilis during sporulation.
    Murray CD; Pun P; Strauss N
    Biochem Biophys Res Commun; 1974 Sep; 60(1):295-303. PubMed ID: 4214050
    [No Abstract]   [Full Text] [Related]  

  • 43. Purification of Bacillus subtilis RNA polymerase with heparin-agarose. In vitro transcription of phi 29 DNA.
    Davison BL; Leighton T; Rabinowitz JC
    J Biol Chem; 1979 Sep; 254(18):9220-6. PubMed ID: 113409
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of DNA conformation on ribosomal RNA synthesis in vitro.
    Travers A; Baillie DL; Pedersen S
    Nat New Biol; 1973 Jun; 243(127):161-3. PubMed ID: 4576627
    [No Abstract]   [Full Text] [Related]  

  • 45. Interaction of granaticin B with the transcription system of Bacillus subtilis.
    Weiser J; Janda I; Mikulík K; Tax J
    Folia Microbiol (Praha); 1977; 22(5):329-38. PubMed ID: 411719
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Specific inhibition of bacteriophage SPO1 DNA-directed protein synthesis by the SPO1 transcription factor, TF 1.
    Wilhelm JM; Johnson G; Haselkorn R; Geiduschek EP
    Biochem Biophys Res Commun; 1972 Mar; 46(5):1970-7. PubMed ID: 4622613
    [No Abstract]   [Full Text] [Related]  

  • 47. Specificity of initiation of transcription of simian virus 40 DNA I by Escherichia coli RNA polymerase: identification and localization of five sites for initiation with [gamma-32P]ATP.
    Lebowitz P; Stern R; Ghosh PK; Weissman SM
    J Virol; 1977 May; 22(2):430-45. PubMed ID: 194061
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Kinetics of transcription by the bacteriophage-T3 RNA polymerase in vitro.
    McAllister WT; Küpper H; Bautz EK
    Eur J Biochem; 1973 May; 34(3):489-501. PubMed ID: 4577197
    [No Abstract]   [Full Text] [Related]  

  • 49. Stimulation of RNA synthesis at initiation by ribosomal proteins.
    Leavitt JC; Hayashi RH; Nakada D
    Arch Biochem Biophys; 1974 Apr; 161(2):705-8. PubMed ID: 4599965
    [No Abstract]   [Full Text] [Related]  

  • 50. Comparison of the A-T rich regions and the Bacillus subtilis RNA polymerase binding sites in phage phi 29 DNA.
    Sogo JM; Rodeño P; Koller T; Viñuela E; Salas M
    Nucleic Acids Res; 1979 Sep; 7(1):107-20. PubMed ID: 114982
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of T7-specific ribonucleic acid polymerase. IV. Resolution of the major in vitro transcripts by gel electrophoresis.
    Golomb M; Chamberlin M
    J Biol Chem; 1974 May; 249(9):2858-63. PubMed ID: 4828324
    [No Abstract]   [Full Text] [Related]  

  • 52. Deoxyribonucleic acid synthesis in bacteriophage SPO1-infected Bacillus subtilis. I. Bacteriophage deoxyribonucleic acid synthesis and fate of host deoxyribonucleic acid in normal and polymerase-deficient strains.
    Yehle CO; Ganesan AT
    J Virol; 1972 Feb; 9(2):263-72. PubMed ID: 4622590
    [TBL] [Abstract][Full Text] [Related]  

  • 53. INHIBITION OF DEOXYRIBONUCLEIC ACID-DIRECTED RIBONUCLEIC ACID POLYMERASE IN ESCHERICHIA COLI AFTER INFECTION WITH BACTERIOPHAGE T4.
    SKOELD O; BUCHANAN JM
    Proc Natl Acad Sci U S A; 1964 Apr; 51(4):553-60. PubMed ID: 14166762
    [No Abstract]   [Full Text] [Related]  

  • 54. Enzymatic synthesis of deoxyribonucleic acid. XXXII. Replication of duplex deoxyribonucleic acid by polymerase at a single strand break.
    Kelly RB; Cozzarelli NR; Deutscher MP; Lehman IR; Kornberg A
    J Biol Chem; 1970 Jan; 245(1):39-45. PubMed ID: 4904090
    [No Abstract]   [Full Text] [Related]  

  • 55. Accessibility of DNA in chromatin to DNA polymerase and RNA polymerase.
    Silverman B; Mirsky AE
    Proc Natl Acad Sci U S A; 1973 May; 70(5):1326-30. PubMed ID: 4576015
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nuclear fraction of Bacillus subtilis as a template for ribonucleic acid synthesis.
    Mizuno S; Whiteley HR
    J Bacteriol; 1968 Apr; 95(4):1221-37. PubMed ID: 4296512
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Changes in the association between Bacillus subtilis RNA polymerase core and two specificity-determining subunits during transcription.
    Chelm BK; Beard C; Geiduschek EP
    Biochemistry; 1981 Nov; 20(23):6564-9. PubMed ID: 6796116
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bacteriophage SP82 induced modifications of Bacillus subtilis RNA polymerase result in the recognition of additional RNA synthesis initiation sites on phage DNA.
    Spiegelman GB; Whiteley HR
    Biochem Biophys Res Commun; 1978 Apr; 81(3):1058-65. PubMed ID: 96824
    [No Abstract]   [Full Text] [Related]  

  • 59. An RNA that multiplies indefinitely with DNA-dependent RNA polymerase: selection from a random copolymer.
    Biebricher CK; Orgel LE
    Proc Natl Acad Sci U S A; 1973 Mar; 70(3):934-8. PubMed ID: 4577140
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Different binding of RNA polymerase to individual promoters.
    Willmund R; Kneser H
    Mol Gen Genet; 1973 Nov; 126(2):165-75. PubMed ID: 4360101
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.