These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 4205190)

  • 1. Lactic acid translocation: terminal step in glycolysis by Streptococcus faecalis.
    Harold FM; Levin E
    J Bacteriol; 1974 Mar; 117(3):1141-8. PubMed ID: 4205190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstitution of lactate proton symport activity in plasma membrane vesicles from the yeast Candida utilis.
    Gerós H; Cássio F; Leão C
    Yeast; 1996 Sep; 12(12):1263-72. PubMed ID: 8905930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-field phosphorus NMR studies of the stoichiometry of the lactate/proton carrier in Streptococcus faecalis.
    Simpson SJ; Bendall MR; Egan AF; Vink R; Rogers PJ
    Eur J Biochem; 1983 Oct; 136(1):63-9. PubMed ID: 6311549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Streptococcus faecalis proton gradients and tetracycline transport.
    Munske GR; Lindley EV; Magnuson JA
    J Bacteriol; 1984 Apr; 158(1):49-54. PubMed ID: 6325398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical proton gradient and lactate concentration gradient in Streptococcus cremoris cells grown in batch culture.
    ten Brink B; Konings WN
    J Bacteriol; 1982 Nov; 152(2):682-6. PubMed ID: 7130128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Streptococcus faecalis mutants defective in regulation of cytoplasmic pH.
    Kobayashi H; Unemoto T
    J Bacteriol; 1980 Sep; 143(3):1187-93. PubMed ID: 6157669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular pH and distribution of weak acids across cell membranes. A study of D- and L-lactate and of DMO in rat diaphragm.
    Roos A
    J Physiol; 1975 Jul; 249(1):1-25. PubMed ID: 239228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lactate and pyruvate transport is dominated by a pH gradient-sensitive carrier in rat skeletal muscle sarcolemmal vesicles.
    Roth DA; Brooks GA
    Arch Biochem Biophys; 1990 Jun; 279(2):386-94. PubMed ID: 2350185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of nigericin, valinomycin, and 2,4-dinitrophenol on intracellular pH, glycolysis, and K + concentration of Ehrlich ascites tumor cells.
    Poole DT; Butler TC; Williams ME
    Biochim Biophys Acta; 1972 May; 266(2):463-70. PubMed ID: 5064534
    [No Abstract]   [Full Text] [Related]  

  • 10. Evidence for activation of an active electrogenic proton pump in Ehrlich ascites tumor cells during glycolysis.
    Heinz A; Sachs G; Schafer JA
    J Membr Biol; 1981; 61(3):143-53. PubMed ID: 6268791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lactate influx and efflux in the 'Streptococcus mutants group' and Streptococcus sanguis.
    Distler W; Kagermeier A; Hickel R; Kröncke A
    Caries Res; 1989; 23(4):252-5. PubMed ID: 2790859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A proton gradient is the driving force for uphill transport of lactate in human placental brush-border membrane vesicles.
    Balkovetz DF; Leibach FH; Mahesh VB; Ganapathy V
    J Biol Chem; 1988 Sep; 263(27):13823-30. PubMed ID: 2843538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy recycling by lactate efflux in growing and nongrowing cells of Streptococcus cremoris.
    ten Brink B; Otto R; Hansen UP; Konings WN
    J Bacteriol; 1985 Apr; 162(1):383-90. PubMed ID: 2984179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactic acid excretion by
    Dashper SG; Reynolds EC
    Microbiology (Reading); 1996 Jan; 142(1):33-39. PubMed ID: 33657745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport of lactate and other short-chain monocarboxylates in the yeast Saccharomyces cerevisiae.
    Cássio F; Leão C; van Uden N
    Appl Environ Microbiol; 1987 Mar; 53(3):509-13. PubMed ID: 3034152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycolytic metabolism in cultured cells of the nervous system. I. Glucose transport and metabolism in the C-6 glioma cell line.
    Lust WD; Schwartz JP; Passonneau JV
    Mol Cell Biochem; 1975 Sep; 8(3):169-76. PubMed ID: 241929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lactate efflux-induced electrical potential in membrane vesicles of Streptococcus cremoris.
    Otto R; Lageveen RG; Veldkamp H; Konings WN
    J Bacteriol; 1982 Feb; 149(2):733-8. PubMed ID: 7056700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active potassium extrusion regulated by intracellular pH in Streptococcus faecalis.
    Kakinuma Y; Igarashi K
    J Biol Chem; 1988 Oct; 263(28):14166-70. PubMed ID: 2459118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. L-lactate transport in Ehrlich ascites-tumour cells.
    Spencer TL; Lehninger AL
    Biochem J; 1976 Feb; 154(2):405-14. PubMed ID: 7237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accumulation of neutral amino acids by Streptococcus faecalis. Energy coupling by a proton-motive force.
    Asghar SS; Levin E; Harold FM
    J Biol Chem; 1973 Aug; 248(15):5225-33. PubMed ID: 4129287
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.