These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 4205196)
21. Analysis of sporulation mutants. II. Mutants blocked in the citric acid cycle. Fortnagel P; Freese E J Bacteriol; 1968 Apr; 95(4):1431-8. PubMed ID: 4967197 [TBL] [Abstract][Full Text] [Related]
22. Regulation of lactate dehydrogenase synthesis in Bacillus subtilis. Yashphe J; Hoch JA; Kaplan NO Biochim Biophys Acta; 1978 Nov; 544(1):1-7. PubMed ID: 102366 [TBL] [Abstract][Full Text] [Related]
23. The regulation of the butanediol cycle in Bacillus subtilis. López J; Fortinagel P Biochim Biophys Acta; 1972 Oct; 279(3):554-60. PubMed ID: 4628298 [No Abstract] [Full Text] [Related]
24. A null mutation in the Bacillus subtilis aconitase gene causes a block in Spo0A-phosphate-dependent gene expression. Craig JE; Ford MJ; Blaydon DC; Sonenshein AL J Bacteriol; 1997 Dec; 179(23):7351-9. PubMed ID: 9393699 [TBL] [Abstract][Full Text] [Related]
25. Inhibition by alloxan of mitochondrial aconitase and other enzymes associated with the citric acid cycle. Boquist L; Ericsson I FEBS Lett; 1984 Dec; 178(2):245-8. PubMed ID: 6510522 [TBL] [Abstract][Full Text] [Related]
26. Isolation of Bacillus subtilis mutants pleiotropically insensitive to glucose catabolite repression. Fisher SH; Magasanik B J Bacteriol; 1984 Mar; 157(3):942-4. PubMed ID: 6421803 [TBL] [Abstract][Full Text] [Related]
27. Two roles for aconitase in the regulation of tricarboxylic acid branch gene expression in Bacillus subtilis. Pechter KB; Meyer FM; Serio AW; Stülke J; Sonenshein AL J Bacteriol; 2013 Apr; 195(7):1525-37. PubMed ID: 23354745 [TBL] [Abstract][Full Text] [Related]
29. [Enzyme activity of citrate, glyoxylate and pentosephosphate cycles during synthesis of citric acids by Candida lipolytica]. Glazunova LM; Finogenova TV Mikrobiologiia; 1976; 45():444-9. PubMed ID: 1004246 [TBL] [Abstract][Full Text] [Related]
30. Regulation of glutamate dehydrogenase in Bacillus subtilis. Kane JF; Wakim J; Fischer RS J Bacteriol; 1981 Dec; 148(3):1002-5. PubMed ID: 6118356 [TBL] [Abstract][Full Text] [Related]
31. Coarse and fine control of citrate synthase from Bacillus subtilis. Flechtner VR; Hanson RS Biochim Biophys Acta; 1969 Jul; 184(2):252-62. PubMed ID: 4980242 [No Abstract] [Full Text] [Related]
32. [Ontogenetic switchover in Bacillus subtilis. II. The dynamics of the stationary phase processes during growth under conditions of catabolite repression]. Rubikas IP; Sasnauskas KV; Iomantas IuV Genetika; 1978; 14(12):2102-12. PubMed ID: 105967 [TBL] [Abstract][Full Text] [Related]
33. Inhibition of aconitase by chelation of transition metals causing inhibition of sporulation in Bacillus subtilis. Fortnagel P; Freese E J Biol Chem; 1968 Oct; 243(20):5289-95. PubMed ID: 4973619 [No Abstract] [Full Text] [Related]
34. Pyruvate and citrate metabolism in the muscle tissue of Ascaris lumbricoides. Barrett J Z Parasitenkd; 1978 Jun; 55(3):223-7. PubMed ID: 29388 [TBL] [Abstract][Full Text] [Related]
35. CcpC, a novel regulator of the LysR family required for glucose repression of the citB gene in Bacillus subtilis. Jourlin-Castelli C; Mani N; Nakano MM; Sonenshein AL J Mol Biol; 2000 Jan; 295(4):865-78. PubMed ID: 10656796 [TBL] [Abstract][Full Text] [Related]
36. Regulation of metabolism in facultative bacteria. II. Effects of aerobiosis, anaerobiosis and nutrition on the formation of Krebs cycle enzymes in Escherichia coli. Gray CT; Wimpenny JW; Mossman MR Biochim Biophys Acta; 1966 Mar; 117(1):33-41. PubMed ID: 5330664 [No Abstract] [Full Text] [Related]
37. Oxalate accumulation from citrate by Aspergillus niger. II. Involvement of the tricarboxylic acid cyclase. Müller HM; Frosch S Arch Microbiol; 1975 Jun; 104(2):159-62. PubMed ID: 1156100 [TBL] [Abstract][Full Text] [Related]
38. The conversion of citrate into cis-aconitate and isocitrate in the presence of aconitase. KREBS HA; HOLZACH O Biochem J; 1952 Nov; 52(3):527-8. PubMed ID: 13018271 [No Abstract] [Full Text] [Related]
39. Dual role of CcpC protein in regulation of aconitase gene expression in Listeria monocytogenes and Bacillus subtilis. Mittal M; Pechter KB; Picossi S; Kim HJ; Kerstein KO; Sonenshein AL Microbiology (Reading); 2013 Jan; 159(Pt 1):68-76. PubMed ID: 23139400 [TBL] [Abstract][Full Text] [Related]
40. Synthesis of oxaloacetate in Bacillus subtilis mutants lacking the 2-ketoglutarate dehydrogenase enzymatic complex. Fisher SH; Magasanik B J Bacteriol; 1984 Apr; 158(1):55-62. PubMed ID: 6425269 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]