BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 4205317)

  • 1. Initiation of protein synthesis by folate-sufficient and folate-deficient Streptococcus faecalis R. Biochemical and biophysical properties of methionine transfer ribonucleic acid.
    Samuel CE; Rabinowitz JC
    J Biol Chem; 1974 Feb; 249(4):1198-206. PubMed ID: 4205317
    [No Abstract]   [Full Text] [Related]  

  • 2. Initiation of protein synthesis by folate-sufficient and folate-deficient Streptococcus faecalis R: partial purification and properties of methionyl-transfer ribonucleic acid synthetase and methionyl-transfer ribonucleic acid formyltransferase.
    Samuel CE; Rabinowitz JC
    J Bacteriol; 1974 Apr; 118(1):21-31. PubMed ID: 4206871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methionine transfer ribonucleic acid from folate-sufficient and folate-deficient Streptococcus faecalis R.
    Samuel CE; Murray CL; Rabinowitz JC
    J Biol Chem; 1972 Nov; 247(21):6856-65. PubMed ID: 4628266
    [No Abstract]   [Full Text] [Related]  

  • 4. The role of folate coenzymes in the initiation of protein synthesis.
    Dickerman HW
    Ann N Y Acad Sci; 1971 Nov; 186():70-84. PubMed ID: 5002669
    [No Abstract]   [Full Text] [Related]  

  • 5. Evidence against the folate-mediated formylation of formyl-accepting methionyl transfer ribonucleic acid in Streptococcus faecalis R.
    Samuel CE; D'Ari L; Rabinowitz JC
    J Biol Chem; 1970 Oct; 245(19):5115-21. PubMed ID: 4990168
    [No Abstract]   [Full Text] [Related]  

  • 6. Inhibition of N-acetylphenylalanyl transfer ribonucleic acid binding to 30S ribosomal subunit of Escherichia coli by N-formylmethionyl transfer ribonucleic acid.
    Blumberg BM; Bernal SD; Nakamoto T
    Biochemistry; 1974 Jul; 13(16):3307-11. PubMed ID: 4601432
    [No Abstract]   [Full Text] [Related]  

  • 7. Initiation of protein synthesis with mischarged tRNAMfet from E. coli.
    Giegé R; Ebel JP; Springer M; Grunberg-Manago M
    FEBS Lett; 1973 Dec; 37(2):166-9. PubMed ID: 4587215
    [No Abstract]   [Full Text] [Related]  

  • 8. How ribosomes work.
    Nature; 1968 Jul; 219(5151):221-2. PubMed ID: 4877991
    [No Abstract]   [Full Text] [Related]  

  • 9. Covalent attachment of fluorescent groups to transfer ribonucleic acid. Reactions with 4-bromomethyl-7-methoxy-2-oxo-2H-benzopyran.
    Yang C; Söll D
    Biochemistry; 1974 Aug; 13(17):3615-21. PubMed ID: 4367729
    [No Abstract]   [Full Text] [Related]  

  • 10. Specificity of protein synthesis by bacterial ribosomes and initiation factors: absence of change after phage T4 infection.
    Goldman E; Lodish HF
    J Mol Biol; 1972 Jun; 67(1):35-47. PubMed ID: 4557601
    [No Abstract]   [Full Text] [Related]  

  • 11. Utilization of isoaccepting leucyl-tRNA in the soluble incorporation system and protein synthesizing systems from E.coli.
    Rao PM; Kaji H
    FEBS Lett; 1974 Jul; 43(2):199-202. PubMed ID: 4605427
    [No Abstract]   [Full Text] [Related]  

  • 12. Ribsome and messenger specificity in protein synthesis by bacteria.
    Stallcup MR; Sharrock WJ; Rabinowitz JC
    Biochem Biophys Res Commun; 1974 May; 58(1):92-8. PubMed ID: 4208644
    [No Abstract]   [Full Text] [Related]  

  • 13. Function of Met-tRNA fMet and Met-tRNA Met in peptide-chain elongation in cell-free systems from mouse-liver and ascites-tumor cells.
    Drews J; Grasmuk H; Weil R
    Eur J Biochem; 1972 Apr; 26(3):416-25. PubMed ID: 5036974
    [No Abstract]   [Full Text] [Related]  

  • 14. [Mechanisms of protein synthesis. 3. On some activities of highly purified ribosomes from Escherichia coli].
    Voigt HP; Matthaei H
    Hoppe Seylers Z Physiol Chem; 1968 Jan; 349(1):65-76. PubMed ID: 4875308
    [No Abstract]   [Full Text] [Related]  

  • 15. Growth and initiation of protein synthesis in Escherichia coli in the presence of trimethoprim.
    Harvey RJ
    J Bacteriol; 1973 Apr; 114(1):309-22. PubMed ID: 4572717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relation between the ribosomal sites involved in initiation and elongation of polypeptide chains. Evidence for two guanosine triphosphatase sites.
    Lockwood AH; Maitra U
    J Biol Chem; 1974 Jan; 249(2):346-52. PubMed ID: 4358547
    [No Abstract]   [Full Text] [Related]  

  • 17. Biosynthesis of ribosylthymine in the transfer RNA of Streptococcus faecalis: a folate-dependent methylation not involving S-adenosylmethionine.
    Delk AS; Rabinowitz JC
    Proc Natl Acad Sci U S A; 1975 Feb; 72(2):528-30. PubMed ID: 804695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of N-nitroso carcinogens and triazenes on protein synthesis in cell-free systems.
    Hradec J; Kolar GF
    Chem Biol Interact; 1974 Apr; 8(4):243-51. PubMed ID: 4598246
    [No Abstract]   [Full Text] [Related]  

  • 19. Effect of thiostrepton on polypeptide chain initiation in Escherichia coli.
    Lockwood AH; Sarkar P; Maitra U; Brot N; Weissbach H
    J Biol Chem; 1974 Sep; 249(18):5831-4. PubMed ID: 4606499
    [No Abstract]   [Full Text] [Related]  

  • 20. Protein chain initiation by methionyl transfer ribonucleic acid in the cytoplasm of Neurospora.
    Rho HM; DeBusk AG
    J Biol Chem; 1971 Nov; 246(21):6566-9. PubMed ID: 4257201
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.