These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 4205556)

  • 41. RNA polymerase mutants blocked in sporulation.
    Sonenshein AL; Losick R
    Nature; 1970 Aug; 227(5261):906-9. PubMed ID: 4988656
    [No Abstract]   [Full Text] [Related]  

  • 42. [Comparative study of the multiplicity of exoenzymes produced by different strains of Bacillus subtilis].
    Strongin AIa; Lukin AA; Izotova LS; Abramov ZT; Ermakova LM
    Mikrobiologiia; 1977; 46(3):539-46. PubMed ID: 408586
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural and enzymatic characterization of acetolactate decarboxylase from Bacillus subtilis.
    Ji F; Li M; Feng Y; Wu S; Wang T; Pu Z; Wang J; Yang Y; Xue S; Bao Y
    Appl Microbiol Biotechnol; 2018 Aug; 102(15):6479-6491. PubMed ID: 29796971
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural alteration of RNA polymerase during sporulation.
    Losick R; Shorenstein RG; Sonenshein AL
    Nature; 1970 Aug; 227(5261):910-3. PubMed ID: 4988657
    [No Abstract]   [Full Text] [Related]  

  • 45. Regulation of purine ribonucleotide synthesis by end product inhibition. I. Effect of purine nucleotides on inosine-5'-phosphate dehydrogenase, xanthosine-5'-phosphate aminase and adenylosuccinate lyase of Bacillus subtilis.
    Ishii K; Shiio I
    J Biochem; 1968 May; 63(5):661-9. PubMed ID: 4972708
    [No Abstract]   [Full Text] [Related]  

  • 46. Protein composition of cell and forespore membranes of Bacillus subtilis.
    Goldman RC
    J Supramol Struct; 1973; 1(3):185-93. PubMed ID: 4217405
    [No Abstract]   [Full Text] [Related]  

  • 47. The regulation of malate dehydrogenase in sporulation mutants of Bacillus subtilis blocked in the citric acid cycle.
    Fortnagel P; López J
    Biochim Biophys Acta; 1971 May; 237(2):320-8. PubMed ID: 4105893
    [No Abstract]   [Full Text] [Related]  

  • 48. [Bacterial mutants having lost catalytic activities connected with nitrate reductase A. 3. Biochemical properties].
    Pichinoty F; Chippaux M
    Ann Inst Pasteur (Paris); 1969 Aug; 117(2):145-78. PubMed ID: 4933461
    [No Abstract]   [Full Text] [Related]  

  • 49. Bacterial citrate synthases: purification, molecular weight and kinetic mechanism.
    Johnson DE; Hanson RS
    Biochim Biophys Acta; 1974 Jun; 350(2):336-53. PubMed ID: 4211224
    [No Abstract]   [Full Text] [Related]  

  • 50. Synthesis of sn-glycerol 3-phosphate, a key precursor of membrane lipids, in Bacillus subtilis.
    Morbidoni HR; de Mendoza D; Cronan JE
    J Bacteriol; 1995 Oct; 177(20):5899-905. PubMed ID: 7592341
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Studies on inosine-5-phosphate dehydrogenase of Bacillus subtilis. Purification and general properties.
    Yokosawa H; Tobita T; Yamada T
    Biochim Biophys Acta; 1971 Mar; 227(3):538-53. PubMed ID: 4998714
    [No Abstract]   [Full Text] [Related]  

  • 52. [Study of metabolism of glycerol by two mutants of Bacillus subtilis].
    Saheb SA
    Can J Microbiol; 1972 Aug; 18(8):1315-25. PubMed ID: 4626435
    [No Abstract]   [Full Text] [Related]  

  • 53. Analysis of the autolysins of Bacillus subtilis 168 during vegetative growth and differentiation by using renaturing polyacrylamide gel electrophoresis.
    Foster SJ
    J Bacteriol; 1992 Jan; 174(2):464-70. PubMed ID: 1345911
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Isolation and characterization of Bacillus subtilis mutants blocked in the synthesis of pantothenic acid.
    Baigori M; Grau R; Morbidoni HR; de Mendoza D
    J Bacteriol; 1991 Jul; 173(13):4240-2. PubMed ID: 1844812
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Highly stereoselective reduction of prochiral ketones by a bacterial reductase coupled with cofactor regeneration.
    Ni Y; Li CX; Wang LJ; Zhang J; Xu JH
    Org Biomol Chem; 2011 Aug; 9(15):5463-8. PubMed ID: 21670841
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Formation of 2,3-pentanediol from 2,3-pentanedione and acetylethylcarbinol by diacetyl(acetoin)reductase from Aerobacter aerogenes. A possible new pathway.
    Larsen SH; Johansen L; Stormer FC; Storesund HJ
    FEBS Lett; 1973 Apr; 31(1):39-41. PubMed ID: 4350968
    [No Abstract]   [Full Text] [Related]  

  • 57. Discrimination of multiforms of diacetyl reductase in hamster liver.
    Hara A; Seiriki K; Nakayama T; Sawada H
    Prog Clin Biol Res; 1985; 174():291-304. PubMed ID: 3885262
    [No Abstract]   [Full Text] [Related]  

  • 58. Consequences of lysine oversynthesis in Pseudomonas mutants insensitive to feedback inhibition. Lysine excretion or endogenous induction of a lysine-catabolic pathway.
    Hermann M; Thevenet NJ; Coudert-Maratier MM; Vandecasteele JP
    Eur J Biochem; 1972 Oct; 30(1):100-6. PubMed ID: 4404468
    [No Abstract]   [Full Text] [Related]  

  • 59. Characterization of intracellular deoxyribonucleases of Bacillus subtilis by SDS-polyacrylamide gel electrophoresis.
    Rama JM; Pérez Ureña MT; López P; Espinosa M
    Microbios; 1987; 49(200-201):199-212. PubMed ID: 3108630
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Separation of diacetyl, acetoin, and 2,3-butylene glycol by ion-exchange chromatography.
    Keen AR; Walker NJ
    Anal Biochem; 1973 Apr; 52(2):475-81. PubMed ID: 4698842
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.