These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 4205688)

  • 1. Biological control of mosquito larvae.
    Chapman HC
    Annu Rev Entomol; 1974; 19():33-59. PubMed ID: 4205688
    [No Abstract]   [Full Text] [Related]  

  • 2. Predators and pathogens for mosquito control.
    Chapman HC; Petersen JJ; Fukuda T
    Am J Trop Med Hyg; 1972 Sep; 21(5):777-81. PubMed ID: 4627549
    [No Abstract]   [Full Text] [Related]  

  • 3. Significant recent advances in biological control of vector insects.
    Weiser J
    Adv Vet Sci Comp Med; 1975; 19():47-72. PubMed ID: 1108619
    [No Abstract]   [Full Text] [Related]  

  • 4. Environmental impact of insect control by microorganisms.
    Laird M
    Ann N Y Acad Sci; 1973 Jun; 217():218-26. PubMed ID: 4198130
    [No Abstract]   [Full Text] [Related]  

  • 5. Larval susceptibility of Culex pipiens fatigans and Anopheles stephensi to Metarrhizum anisopliae.
    Balaraman K; Jambulingam P; Rajagopalan PK
    Indian J Med Res; 1981 Jan; 73 Suppl():160-2. PubMed ID: 6116669
    [No Abstract]   [Full Text] [Related]  

  • 6. [Characteristics of Bacillus thuringiensis var. israelensis and its effect on mosquito larvae (Diptera: Culicidae)].
    Müller P
    Angew Parasitol; 1984 Aug; 25(3):157-63. PubMed ID: 6149708
    [No Abstract]   [Full Text] [Related]  

  • 7. Beauveria tenella as a control agent for mosquito larvae.
    Pinnock DE; Garcia R; Cubbin CM
    J Invertebr Pathol; 1973 Sep; 22(2):143-7. PubMed ID: 4798943
    [No Abstract]   [Full Text] [Related]  

  • 8. Larvicidal effect of extracellular secondary metabolites of different fungi against the mosquito, Culex quinquefasciatus Say.
    Govindarajan M; Jebanesan A; Reetha D
    Trop Biomed; 2005 Jun; 22(1):1-3. PubMed ID: 16880747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diximermis peterseni (Nematoda: Mermithidae): a potential biocontrol agent of Anopheles mosquito larvae.
    Petersen JJ; Willis OR
    J Invertebr Pathol; 1974 Jul; 24(1):20-3. PubMed ID: 4851420
    [No Abstract]   [Full Text] [Related]  

  • 10. Comparative studies of Metarhizium anisopliae and Tolypocladium cylindrosporum as pathogens of mosquito larvae.
    Riba G; Keita A; Soares GG; Ferron P
    J Am Mosq Control Assoc; 1986 Dec; 2(4):469-73. PubMed ID: 2906985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Field trials of Tolypocladium cylindrosporum against larvae of Aedes polynesiensis breeding in crab holes in Fiji.
    Gardner JM; Ram RC; Kumar S; Pillai JS
    J Am Mosq Control Assoc; 1986 Sep; 2(3):292-5. PubMed ID: 3507501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new serovar of Bacillus thuringiensis possessing 28a28c flagellar antigenic structure: Bacillus thuringiensis serovar jegathesan, selectively toxic against mosquito larvae.
    Seleena P; Lee HL; Lecadet MM
    J Am Mosq Control Assoc; 1995 Dec; 11(4):471-3. PubMed ID: 8825511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of mosquito-toxic bacteria from mosquito-breeding sites in Kenya.
    Asimeng EJ; Mutinga MJ
    J Am Mosq Control Assoc; 1992 Mar; 8(1):86-8. PubMed ID: 1583497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predatory potential of Nepa cinerea against mosquito larvae in laboratory conditions.
    Singh RK; Singh SP
    J Commun Dis; 2004 Jun; 36(2):105-10. PubMed ID: 16295671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Experimental study of a virus disease of the densonculeosis type in Aedes aegypti L. larvae].
    Gonchar NM; Lebedinets NN; Buchatskiĭ LP; Kuznetsova MA; Zelenko AP
    Med Parazitol (Mosk); 1974; 43(3):341-3. PubMed ID: 4459705
    [No Abstract]   [Full Text] [Related]  

  • 16. Use of Bactimos briquets (B.t.i. formulation) combined with the backswimmer Notonecta irrorata (Hemiptera:Notonectidae) for control of mosquito larvae.
    Neri-Barbosa JF; Quiroz-Martinez H; Rodriguez-Tovar ML; Tejada LO; Badii MH
    J Am Mosq Control Assoc; 1997 Mar; 13(1):87-9. PubMed ID: 9152881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The effect of Culex family mosquito larva on the sensitivity of Anopheles mosquitos with various karyotypes to the entomopathogenic bacteria Bacillus thuringiensis subsp. Israelensis].
    Gordeev MI; Burlak VA
    Genetika; 1994 Mar; 30(3):367-72. PubMed ID: 8188058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laboratory evaluation of the biocontrol potential of Mesocyclops thermocyclopoides (Copepoda: Cyclopidae) against mosquito larvae.
    Mittal PK; Dhiman RC; Adak T; Sharma VP
    Southeast Asian J Trop Med Public Health; 1997 Dec; 28(4):857-61. PubMed ID: 9656415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laboratory and field plot bioassay of Bacillus sphaericus against Arkansas mosquito species.
    Groves RL; Meisch MV
    J Am Mosq Control Assoc; 1996 Jun; 12(2 Pt 1):220-4. PubMed ID: 8827596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Field tests of Bacillus thuringiensis var. israelensis against Culex mosquito larvae in Dhaka City.
    Ahmed TU; Maheswary NP; Ahmed AJ; Ahmed JU
    Bangladesh Med Res Counc Bull; 1988 Dec; 14(2):58-66. PubMed ID: 3250457
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.