These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Freezing point and melting point of barnacle muscle fibers. Caillé JP Can J Physiol Pharmacol; 1983 Oct; 61(10):1116-21. PubMed ID: 6640420 [TBL] [Abstract][Full Text] [Related]
5. Calcium carrying system in the giant muscle fibre of the barnacle species, Balanus nubilus. Beirao PS; Lakshminarayanaiah N J Physiol; 1979 Aug; 293():319-27. PubMed ID: 41091 [TBL] [Abstract][Full Text] [Related]
6. An investigation of myoplasmic magnesium adenosine triphosphate in barnacle muscle fibres with the firefly method. Bittar EE; Keh T J Physiol; 1980 May; 302():73-88. PubMed ID: 7411471 [TBL] [Abstract][Full Text] [Related]
7. Water and electrolyte content of the myofilament phase in the chemically skinned barnacle fiber. Hinke JA J Gen Physiol; 1980 May; 75(5):531-51. PubMed ID: 7189772 [TBL] [Abstract][Full Text] [Related]
8. Impedance of membrane and myoplasm during the action potential of frog muscle. Freygang WH; Gunn R J Gen Physiol; 1973 Apr; 61(4):482-9. PubMed ID: 4540419 [TBL] [Abstract][Full Text] [Related]
9. Localization of calcium binding sites associated with the calcium spike in barnacle muscle. Henkart M; Hagiwara S J Membr Biol; 1976 Jun; 27(1-2):1-20. PubMed ID: 6799 [TBL] [Abstract][Full Text] [Related]
10. [Effect of pH, Mg2+ and ATP on the electric conductivity of muscle protoplasm in the barnacle]. Caillé JP Can J Physiol Pharmacol; 1977 Aug; 55(4):888-94. PubMed ID: 20214 [No Abstract] [Full Text] [Related]
11. The efflux of calcium from single crab and barnacle muscle fibres. Ashley CC; Caldwell PC; Lowe AG J Physiol; 1972 Jun; 223(3):735-55. PubMed ID: 5045739 [TBL] [Abstract][Full Text] [Related]
12. Further observations of aldosterone response in barnacle muscle fibers. Tallitsch RB Am J Physiol; 1983 Sep; 245(3):E230-8. PubMed ID: 6614162 [TBL] [Abstract][Full Text] [Related]
13. Effect of carbon dioxide on calcium transient and tension responses from fibres of the barnacle Balanus nubilus [proceedings]. Ashley CC; Franciolini F; Lea TJ; Lignon J J Physiol; 1979 Nov; 296():71P. PubMed ID: 43393 [No Abstract] [Full Text] [Related]
14. A study of the ouabain-insensitive sodium efflux in barnacle muscle fibres using phorbol dibutyrate as a probe. Bittar EE; Nwoga J J Physiol; 1990 May; 424():263-82. PubMed ID: 2167970 [TBL] [Abstract][Full Text] [Related]
15. A diazo-2 study of relaxation mechanisms in frog and barnacle muscle fibres: effects of pH, MgADP, and inorganic phosphate. Lipscomb S; Palmer RE; Li Q; Allhouse LD; Miller T; Potter JD; Ashley CC Pflugers Arch; 1999 Jan; 437(2):204-12. PubMed ID: 9929560 [TBL] [Abstract][Full Text] [Related]
16. Calcium concentration in the myoplasm of skinned ferret ventricular muscle following changes in muscle length. Allen DG; Kentish JC J Physiol; 1988 Dec; 407():489-503. PubMed ID: 3151492 [TBL] [Abstract][Full Text] [Related]
17. Effect of temperature on membrane potential and ionic fluxes in intact and dialysed barnacle muscle fibres. Dipolo R; Latorre R J Physiol; 1972 Sep; 225(2):255-73. PubMed ID: 5074384 [TBL] [Abstract][Full Text] [Related]
18. Sensitivity of the Na efflux in barnacle muscle fibres to the microinjection of troponin-C. Bittar EE; Tong E; Greaser M Experientia; 1973 Dec; 29(12):1503-4. PubMed ID: 4772043 [No Abstract] [Full Text] [Related]
19. The effect of pH on the rate of relaxation of isolated barnacle myofibrillar bundles. Lea TJ; Ashley CC Biochim Biophys Acta; 1982 Jul; 681(1):130-7. PubMed ID: 6810930 [No Abstract] [Full Text] [Related]
20. The influence of "nonmyoplasmic" sodium on the measured value of the sodium efflux from barnacle muscle. Menard MR; Hinke JA Can J Physiol Pharmacol; 1981 Dec; 59(12):1219-27. PubMed ID: 7337875 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]