These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 4206870)
1. Use of ultraviolet radiation to locate dipicolinic acid in Bacillus cereus spores. Germaine GR; Murrell WG J Bacteriol; 1974 Apr; 118(1):202-8. PubMed ID: 4206870 [TBL] [Abstract][Full Text] [Related]
2. Photoprotection by dipicolinate against inactivation of bacterial spores with ultraviolet light. Grecz N; Tang T; Frank HA J Bacteriol; 1973 Feb; 113(2):1058-60. PubMed ID: 4632312 [TBL] [Abstract][Full Text] [Related]
3. Involvement of calcium and dipicolinic acid in the resistance of Bacillus cereus BIS-59 spores to u.v. and gamma radiations. Kamat AS; Pradhan DS Int J Radiat Biol Relat Stud Phys Chem Med; 1987 Jan; 51(1):7-18. PubMed ID: 3100469 [TBL] [Abstract][Full Text] [Related]
4. Relationship of dipicolinic acid content in spores of Bacillus cereus T to ultraviolet and gamma radiation resistance. Berg PE; Grecz N J Bacteriol; 1970 Aug; 103(2):517-9. PubMed ID: 4988248 [TBL] [Abstract][Full Text] [Related]
5. Determination of dipicolinic acid in bacterial spores by derivative spectroscopy. Warth AD Anal Biochem; 1983 Apr; 130(2):502-5. PubMed ID: 6408947 [TBL] [Abstract][Full Text] [Related]
6. Development of ultraviolet resistance in sporulating Bacillus cereus T. Germaine GR; Coggiola E; Murrell WG J Bacteriol; 1973 Nov; 116(2):823-31. PubMed ID: 4200858 [TBL] [Abstract][Full Text] [Related]
7. Photoreactivation, photoproduct formation, and deoxyribonucleic acid state in ultraviolet-irradiated sporulating cultures of Bacillus cereus. Baillie E; Germaine GR; Murrell WG; Ohye DF J Bacteriol; 1974 Oct; 120(1):516-23. PubMed ID: 4214215 [TBL] [Abstract][Full Text] [Related]
8. Ultraviolet sensitivity and photoproducts in spore-like bodies of an excision-repair-deficient and dipicolinic-acid-less strain of Bacillus subtilis. Munakata N; Fitz-Jones PC; Young IE Can J Microbiol; 1975 Jul; 21(7):1129-32. PubMed ID: 807309 [TBL] [Abstract][Full Text] [Related]
9. Effects of glutamic acid on sporulation of Bacillus cereus and on spore properties. Kennedy RS; Malveaux FJ; Cooney JJ Can J Microbiol; 1971 Apr; 17(4):511-9. PubMed ID: 4994922 [No Abstract] [Full Text] [Related]
10. Characterization of spores of Bacillus subtilis which lack dipicolinic acid. Paidhungat M; Setlow B; Driks A; Setlow P J Bacteriol; 2000 Oct; 182(19):5505-12. PubMed ID: 10986255 [TBL] [Abstract][Full Text] [Related]
11. Role of dipicolinic acid in survival of Bacillus subtilis spores exposed to artificial and solar UV radiation. Slieman TA; Nicholson WL Appl Environ Microbiol; 2001 Mar; 67(3):1274-9. PubMed ID: 11229921 [TBL] [Abstract][Full Text] [Related]
12. Characterization of Clostridium difficile Spores Lacking Either SpoVAC or Dipicolinic Acid Synthetase. Donnelly ML; Fimlaid KA; Shen A J Bacteriol; 2016 Jun; 198(11):1694-1707. PubMed ID: 27044622 [TBL] [Abstract][Full Text] [Related]
13. Pseudogermination in dipicolinic acid-less spores of a Bacillus cereus T mutant. Frank HA; Tonaki KI J Bacteriol; 1971 Apr; 106(1):292-3. PubMed ID: 4994601 [TBL] [Abstract][Full Text] [Related]
14. Laser Raman spectroscopy of lyophilized bacterial spores. Shibata H; Yamashita S; Ohe M; Tani I Microbiol Immunol; 1986; 30(4):307-13. PubMed ID: 3088398 [TBL] [Abstract][Full Text] [Related]
15. Plasmid-associated sensitivity of Bacillus thuringiensis to UV light. Benoit TG; Wilson GR; Bull DL; Aronson AI Appl Environ Microbiol; 1990 Aug; 56(8):2282-6. PubMed ID: 2119568 [TBL] [Abstract][Full Text] [Related]
16. Effect of dipicolinic acid on the ultraviolet radiation resistance of Bacillus cereus spores. Germaine GR; Murrell WG Photochem Photobiol; 1973 Mar; 17(3):145-53. PubMed ID: 4632644 [No Abstract] [Full Text] [Related]
17. Spore refractility in variants of Bacillus cereus treated with actinomycin D. Pearce SM; Fitz-James PC J Bacteriol; 1971 Jul; 107(1):337-44. PubMed ID: 4998247 [TBL] [Abstract][Full Text] [Related]
18. A two-step transport pathway allows the mother cell to nurture the developing spore in Bacillus subtilis. RamÃrez-Guadiana FH; Meeske AJ; Rodrigues CDA; Barajas-Ornelas RDC; Kruse AC; Rudner DZ PLoS Genet; 2017 Sep; 13(9):e1007015. PubMed ID: 28945739 [TBL] [Abstract][Full Text] [Related]
19. Levels of Ca2+-dipicolinic acid in individual bacillus spores determined using microfluidic Raman tweezers. Huang SS; Chen D; Pelczar PL; Vepachedu VR; Setlow P; Li YQ J Bacteriol; 2007 Jul; 189(13):4681-7. PubMed ID: 17468248 [TBL] [Abstract][Full Text] [Related]
20. Slow leakage of Ca-dipicolinic acid from individual bacillus spores during initiation of spore germination. Wang S; Setlow P; Li YQ J Bacteriol; 2015 Mar; 197(6):1095-103. PubMed ID: 25583976 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]