These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 420798)

  • 41. Evidence for the formation of microdomains in liquid crystalline large unilamellar vesicles caused by hydrophobic mismatch of the constituent phospholipids.
    Lehtonen JY; Holopainen JM; Kinnunen PK
    Biophys J; 1996 Apr; 70(4):1753-60. PubMed ID: 8785334
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pressure effects on the physical properties of lipid bilayers detected by trans-parinaric acid fluorescence decay.
    Reyes Mateo C; Tauc P; Brochon JC
    Biophys J; 1993 Nov; 65(5):2248-60. PubMed ID: 8298048
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fluorescent detection of lipopolysaccharide interactions with model membranes.
    Price RM; Jacobs DM
    Biochim Biophys Acta; 1986 Jul; 859(1):26-32. PubMed ID: 3718984
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fluorescence probe studies of the interaction of ubiquinone-10 and ubiquinol-10 with phosphatidylcholine bilayers.
    Aranda FJ; Gómez-Fernandez JC
    Biochem Int; 1986 Jan; 12(1):137-43. PubMed ID: 3753870
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The membrane fluidity concept revisited by polarized fluorescence spectroscopy on different model membranes containing unsaturated lipids and sterols.
    van Ginkel G; van Langen H; Levine YK
    Biochimie; 1989 Jan; 71(1):23-32. PubMed ID: 2497794
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Monitoring the location profile of fluorophores in phosphatidylcholine bilayers by the use or paramagnetic quenching.
    Luisetti J; Möhwald H; Galla HJ
    Biochim Biophys Acta; 1979 Apr; 552(3):519-30. PubMed ID: 221020
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of double bonds on the dynamic properties of the hydrocarbon region of lecithin bilayers.
    Stubbs CD; Kouyama T; Kinosita K; Ikegami A
    Biochemistry; 1981 Jul; 20(15):4257-62. PubMed ID: 7284325
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rotational relaxation of 1,6-diphenylhexatriene in membrane lipids of cells acclimated to high and low growth temperatures.
    Martin CE; Foyt DC
    Biochemistry; 1978 Aug; 17(17):3587-91. PubMed ID: 99168
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interaction of a serum apo-lipoprotein with ordered and fluid lipid bilayers. Correlation between lipid and protein structure.
    Träuble H; Middelhoff G; Brown VW
    FEBS Lett; 1974 Dec; 49(2):269-75. PubMed ID: 4442607
    [No Abstract]   [Full Text] [Related]  

  • 50. A dimerization model for the concentration dependent photophysical properties of diphenylhexatriene and its phospholipid derivatives. DPHpPC and DPHpPA.
    Lentz BR; Burgess SW
    Biophys J; 1989 Oct; 56(4):723-33. PubMed ID: 2819236
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effect of factor Va on lipid dynamics in mixed phospholipid vesicles as detected by steady-state and time-resolved fluorescence depolarization of diphenylhexatriene.
    van de Waart P; Visser AJ; Hemker HC; Lindhout T
    Eur J Biochem; 1987 Apr; 164(2):337-43. PubMed ID: 3569268
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fluorescent probe: diphenylhexatriene.
    Litman BJ; Barenholz Y
    Methods Enzymol; 1982; 81():678-85. PubMed ID: 7098908
    [No Abstract]   [Full Text] [Related]  

  • 53. Theoretical considerations on the asymmetric distribution of charged phospholipid molecules on the inner and outer layers of curved bilayer membranes.
    Israelachvili JN
    Biochim Biophys Acta; 1973 Nov; 323(4):659-63. PubMed ID: 4761099
    [No Abstract]   [Full Text] [Related]  

  • 54. Fluidity of intact erythrocyte membranes. Correction for fluorescence energy transfer from diphenylhexatriene to hemoglobin.
    Plásek J; Cermáková D; Jarolím P
    Biochim Biophys Acta; 1988 Jun; 941(2):119-22. PubMed ID: 3382643
    [TBL] [Abstract][Full Text] [Related]  

  • 55. 1-Anilino-8-naphthalenesulfonate: a fluorescent probe of membrane surface structure, composition and mobility.
    Haynes DH; Staerk H
    J Membr Biol; 1974 Jul; 17(3):313-40. PubMed ID: 4847763
    [No Abstract]   [Full Text] [Related]  

  • 56. Steroid structural requirements for stabilizing or disrupting lipid domains.
    Wenz JJ; Barrantes FJ
    Biochemistry; 2003 Dec; 42(48):14267-76. PubMed ID: 14640695
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of amyloid β-peptide on the fluidity of phosphatidylcholine membranes: Uses and limitations of diphenylhexatriene fluorescence anisotropy.
    Suzuki M; Miura T
    Biochim Biophys Acta; 2015 Mar; 1848(3):753-9. PubMed ID: 25497764
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The interaction of atebrin with phospholipid vesicles.
    Massari S
    Biochim Biophys Acta; 1975 Jan; 375(1):22-34. PubMed ID: 1111575
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Diffusion and partitioning of a pesticide, lindane, into phosphatidylcholine bilayers. A new fluorescence quenching method to study chlorinated hydrocarbon-membrane interactions.
    Lakowicz JR; Hogen D; Omann G
    Biochim Biophys Acta; 1977 Dec; 471(3):401-11. PubMed ID: 72564
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The fluidity of plasma membranes of Dictyostelium discoideum. The effects of polyunsaturated fatty acid incorporation assessed by fluorescence depolarization and electron paramagnetic resonance.
    Herring FG; Tatischeff I; Weeks G
    Biochim Biophys Acta; 1980 Oct; 602(1):1-9. PubMed ID: 6251880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.