These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Dependence of mononucleosome deoxyribonucleic acid conformation on the deoxyribonucleic acid length and H1/H5 content. Circular dichroism and thermal denaturation studies. Cowman MK; Fasman GD Biochemistry; 1980 Feb; 19(3):532-41. PubMed ID: 7356945 [TBL] [Abstract][Full Text] [Related]
3. The structure of chromatin reconstituted with phosphorylated H1. Circular dichroism and thermal denaturation studies. Kaplan LJ; Bauer R; Morrison E; Langan TA; Fasman GD J Biol Chem; 1984 Jul; 259(14):8777-85. PubMed ID: 6746623 [TBL] [Abstract][Full Text] [Related]
4. The structure of sub-nucleosomal particles. The octameric (H3/H4)4--125-base-pair-DNA complex. Read CM; Crane-Robinson C Eur J Biochem; 1985 Oct; 152(1):143-50. PubMed ID: 4043075 [TBL] [Abstract][Full Text] [Related]
5. Core nucleosomes by digestion of reconstructed histone-DNA complexes. Bryan PN; Wright EB; Olins DE Nucleic Acids Res; 1979 Apr; 6(4):1449-65. PubMed ID: 450703 [TBL] [Abstract][Full Text] [Related]
6. Reconstitution of chromatin core particles. Tatchell K; Van Holde KE Biochemistry; 1977 Nov; 16(24):5295-303. PubMed ID: 921932 [TBL] [Abstract][Full Text] [Related]
7. Structure of subnucleosomal particles. Tetrameric (H3/H4)2 146 base pair DNA and hexameric (H3/H4)2(H2A/H2B)1 146 base pair DNA complexes. Read CM; Baldwin JP; Crane-Robinson C Biochemistry; 1985 Jul; 24(16):4435-50. PubMed ID: 4052408 [TBL] [Abstract][Full Text] [Related]
8. Histones H2A and H2B are neighbors along DNA in chromatin: characterization of subnucleosomal particles containing H2A+H2B. Nelson DA; Oosterhof DK; Rill RL Nucleic Acids Res; 1977 Dec; 4(12):4223-34. PubMed ID: 600795 [TBL] [Abstract][Full Text] [Related]
9. Relaxation of chromatin structure upon removal of histones H2A and H2B. Jordano J; Montero F; Palacián E FEBS Lett; 1984 Jun; 172(1):70-4. PubMed ID: 6734822 [TBL] [Abstract][Full Text] [Related]
10. Folding of 140-base pair length DNA by a core of arginine-rich histones. Bina-Stein M J Biol Chem; 1978 Jul; 253(14):5213-9. PubMed ID: 670187 [TBL] [Abstract][Full Text] [Related]
11. Reversible dissociation of linker histone from chromatin with preservation of internucleosomal repeat. Allan J; Staynov DZ; Gould H Proc Natl Acad Sci U S A; 1980 Feb; 77(2):885-9. PubMed ID: 6928686 [TBL] [Abstract][Full Text] [Related]
12. Thermal denaturation of nucleosomal core particles. Weischet WO; Tatchell K; Van Holde KE; Klump H Nucleic Acids Res; 1978 Jan; 5(1):139-60. PubMed ID: 643604 [TBL] [Abstract][Full Text] [Related]
13. In vitro core particle and nucleosome assembly at physiological ionic strength. Ruiz-Carrillo A; Jorcano JL; Eder G; Lurz R Proc Natl Acad Sci U S A; 1979 Jul; 76(7):3284-8. PubMed ID: 291002 [TBL] [Abstract][Full Text] [Related]
14. Cromatin and core particles formed from the inner histones and synthetic polydeoxyribonucleotides of defined sequence. Simpson RT; Künzler P Nucleic Acids Res; 1979 Apr; 6(4):1387-415. PubMed ID: 450700 [TBL] [Abstract][Full Text] [Related]
15. Analysis of subunit organization in chicken erythrocyte chromatin. Shaw BR; Herman TM; Kovacic RT; Beaudreau GS; Van Holde KE Proc Natl Acad Sci U S A; 1976 Feb; 73(2):505-9. PubMed ID: 1061151 [TBL] [Abstract][Full Text] [Related]
16. Pathway-dependent reconstitution of chromatin structure from separated constituents. Allan J; Fey SJ; Cowling GJ; Gould HJ; Maryanka D J Biol Chem; 1979 Nov; 254(21):11061-5. PubMed ID: 500624 [TBL] [Abstract][Full Text] [Related]