These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 4208141)

  • 21. On the specificity of phospho-N-acetylmuramyl-pentapeptide translocase. The peptide subunit of uridine diphosphate-N-actylmuramyl-pentapeptide.
    Hammes WP; Neuhaus FC
    J Biol Chem; 1974 May; 249(10):3140-50. PubMed ID: 4208473
    [No Abstract]   [Full Text] [Related]  

  • 22. Studies of the biosynthesis of the O9 antigen from Escherichia coli O9:K30(A):H12.
    Fitzgerald-Chandler DK; Jann K
    Eur J Biochem; 1971 Dec; 24(2):222-31. PubMed ID: 4945500
    [No Abstract]   [Full Text] [Related]  

  • 23. TEICHOIC ACIDS AND THE BACTERIAL CELL WALL.
    BADDILEY J
    Endeavour; 1964 Jan; 23():33-7. PubMed ID: 14116562
    [No Abstract]   [Full Text] [Related]  

  • 24. Xanthine phosphoribosyltransferase from Streptococcus faecalis. Properties and specificity.
    Miller RL; Adamczyk DL; Fyfe JA; Elion GB
    Arch Biochem Biophys; 1974 Nov; 165(1):349-58. PubMed ID: 4216296
    [No Abstract]   [Full Text] [Related]  

  • 25. CTP:glycerol 3-phosphate cytidylyltransferase (TarD) from Staphylococcus aureus catalyzes the cytidylyl transfer via an ordered Bi-Bi reaction mechanism with micromolar K(m) values.
    Badurina DS; Zolli-Juran M; Brown ED
    Biochim Biophys Acta; 2003 Mar; 1646(1-2):196-206. PubMed ID: 12637027
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pseudo-allelic relationship between non-homologous genes concerned with biosynthesis of polyglycerol phosphate and polyribitol phosphate teichoic acids in Bacillus subtilis strains 168 and W23.
    Young M; Mauël C; Margot P; Karamata D
    Mol Microbiol; 1989 Dec; 3(12):1805-12. PubMed ID: 2516220
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Late-stage polyribitol phosphate wall teichoic acid biosynthesis in Staphylococcus aureus.
    Meredith TC; Swoboda JG; Walker S
    J Bacteriol; 2008 Apr; 190(8):3046-56. PubMed ID: 18281399
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of glucosylation of teichoic acid. II. Partial characterization of phosphoglucomutase in Bacillus subtilis 168.
    Maino VC; Young FE
    J Biol Chem; 1974 Aug; 249(16):5176-81. PubMed ID: 4212311
    [No Abstract]   [Full Text] [Related]  

  • 29. Peptidoglycan synthesis in bacilli. I. Effect of temperature on the in vitro system from Bacillus megaterium and Bacillus stearothermophilus.
    Reynolds PE
    Biochim Biophys Acta; 1971 May; 237(2):239-54. PubMed ID: 4255188
    [No Abstract]   [Full Text] [Related]  

  • 30. Staphylococcus aureus and Bacillus subtilis W23 make polyribitol wall teichoic acids using different enzymatic pathways.
    Brown S; Meredith T; Swoboda J; Walker S
    Chem Biol; 2010 Oct; 17(10):1101-10. PubMed ID: 21035733
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure of the intracellular glycerol teichoic acid from Lactobacillus casei A.T.C.C. 7469.
    KELEMEN MV; BADDILEY J
    Biochem J; 1961 Aug; 80(2):246-54. PubMed ID: 13752252
    [No Abstract]   [Full Text] [Related]  

  • 32. Peptidoglycan synthesis in bacilli. II. Characteristics of protoplast membrane preparations.
    Reynolds PE
    Biochim Biophys Acta; 1971 May; 237(2):255-72. PubMed ID: 4255189
    [No Abstract]   [Full Text] [Related]  

  • 33. Effect of 3,4-dihydroxybutyl-1-phosphonate on phosphoglyceride and lipoteichoic acid synthesis in Bacillus subtilis.
    Deutsch RM; Engel R; Tropp BE
    J Biol Chem; 1980 Feb; 255(4):1521-5. PubMed ID: 6153387
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NAD: arginine mono-ADP-ribosyltransferases from animal cells.
    Moss J; Vaughan M
    Methods Enzymol; 1984; 106():430-7. PubMed ID: 6436644
    [No Abstract]   [Full Text] [Related]  

  • 35. Synthesis of teichoic acid by Bacillus subtilis protoplasts.
    Bertram KC; Hancock IC; Baddiley J
    J Bacteriol; 1981 Nov; 148(2):406-12. PubMed ID: 6271728
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inhibition of bacterial wall lysins by lipoteichoic acids and related compounds.
    Cleveland RF; Holtje JV; Wicken AJ; Tomasz A; Daneo-Moore L; Shockman GD
    Biochem Biophys Res Commun; 1975 Dec; 67(3):1128-35. PubMed ID: 1027
    [No Abstract]   [Full Text] [Related]  

  • 37. Synthesis of (14C)-ribose-5-phosphate and (14C)-phosphoribosylpyrophosphate and their use in new enzyme assays.
    Boss GR; Idriss SD; Willis RC; Seegmiller JE
    Adv Exp Med Biol; 1984; 165 Pt B():11-3. PubMed ID: 6202119
    [No Abstract]   [Full Text] [Related]  

  • 38. The regulation of synthesis of wall polymers and of wall assembly in Bacillus.
    Hancock IC
    Biochem Soc Trans; 1985 Dec; 13(6):994-6. PubMed ID: 3937757
    [No Abstract]   [Full Text] [Related]  

  • 39. Biosynthesis of wall polymers in Bacillus subtilis.
    Wyke AW; Ward JB
    J Bacteriol; 1977 Jun; 130(3):1055-63. PubMed ID: 405370
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of lipid-linked activated sugars in glycosylation reactions.
    Lennarz WJ; Scher MG
    J Bioenerg; 1973 Jan; 4(1):239-51. PubMed ID: 4577758
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.