BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 420824)

  • 1. Evidence for hemiacetal formation between N-acyl-L-phenylalaninals and alpha-chymotrypsin by cross-saturation nuclear magnetic resonance spectroscopy.
    Chen R; Gorenstein DG; Kennedy WP; Lowe G; Nurse D; Schultz RM
    Biochemistry; 1979 Mar; 18(5):921-6. PubMed ID: 420824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proton and fluorine nuclear magnetic resonance spectroscopic observation of hemiacetal formation between N-acyl-p-fluorophenylalaninals and alpha-chymotrypsin.
    Gorenstein DG; Shah DO
    Biochemistry; 1982 Sep; 21(19):4679-86. PubMed ID: 7138821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A proton-magnetic-resonance study of N-trifluoroacetyl-L-alanyl-L-phenylalaninal binding to alpha-chymotrypsin.
    Wyeth P; Sharma RP; Akhtar M
    Eur J Biochem; 1980 Apr; 105(3):581-5. PubMed ID: 6245886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation of low-barrier hydrogen bonding and oxyanion binding in transition state analogue complexes of chymotrypsin.
    Neidhart D; Wei Y; Cassidy C; Lin J; Cleland WW; Frey PA
    Biochemistry; 2001 Feb; 40(8):2439-47. PubMed ID: 11327865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-[2,2-dimethyl-3-(N-(4-cyanobenzoyl)amino)nonanoyl]-L-phenylalanine ethyl ester as a stable ester-type inhibitor of chymotrypsin-like serine proteases: structural requirements for potent inhibition of alpha-chymotrypsin.
    Iijima K; Katada J; Yasuda E; Uno I; Hayashi Y
    J Med Chem; 1999 Jan; 42(2):312-23. PubMed ID: 9925737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of papain by N-acyl-aminoacetaldehydes and N-acyl-aminopropanones. Evidence for hemithioacetal formation by a cross-saturation technique in nuclear-magnetic resonance spectroscopy.
    Bendall MR; Cartwright IL; Clark PI; Lowe G; Nurse D
    Eur J Biochem; 1977 Sep; 79(1):201-9. PubMed ID: 913417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the structure of tetrahedral transition state analogues bound at the active site of chymotrypsin using 18O and 2H isotope shifts in the 13C NMR spectra of glyoxal inhibitors.
    Spink E; Hewage C; Malthouse JP
    Biochemistry; 2007 Nov; 46(44):12868-74. PubMed ID: 17927215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acid-sensitive latent inhibitors for proteolytic enzymes: synthesis and characterization.
    Silver MS; Haskell JH
    J Med Chem; 1989 Jun; 32(6):1253-9. PubMed ID: 2724298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH dependence of the inhibition of chymotrypsin by a peptidyl trifluoromethyl ketone.
    Brady K; Liang TC; Abeles RH
    Biochemistry; 1989 Nov; 28(23):9066-70. PubMed ID: 2605240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complex of alpha-chymotrypsin and N-acetyl-L-leucyl-L-phenylalanyl trifluoromethyl ketone: structural studies with NMR spectroscopy.
    Liang TC; Abeles RH
    Biochemistry; 1987 Dec; 26(24):7603-8. PubMed ID: 3427096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specificity and stereospecificity of alpha-chymotrypsin.
    Ingles DW; Knowles JR
    Biochem J; 1967 Aug; 104(2):369-77. PubMed ID: 6048779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemiacetal stabilization in a chymotrypsin inhibitor complex and the reactivity of the hydroxyl group of the catalytic serine residue of chymotrypsin.
    Cleary JA; Doherty W; Evans P; Malthouse JP
    Biochim Biophys Acta; 2014 Jun; 1844(6):1119-27. PubMed ID: 24657307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mechanistic study on the inhibition of α-chymotrypsin by a macrocyclic peptidomimetic aldehyde.
    Zhang X; Bruning JB; George JH; Abell AD
    Org Biomol Chem; 2016 Aug; 14(29):6970-8. PubMed ID: 27349772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Affinity chromatography of chymotrypsin on a sepharose derivative coupled with a chymostatin analogue.
    Nishikata M
    J Biochem; 1983 Jan; 93(1):73-9. PubMed ID: 6841337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of a bioluminogenic substrate for alpha-chymotrypsin.
    Monsees T; Miska W; Geiger R
    Anal Biochem; 1994 Sep; 221(2):329-34. PubMed ID: 7810874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMR chemical shift mapping of the binding site of a protein proteinase inhibitor: changes in the (1)H, (13)C and (15)N NMR chemical shifts of turkey ovomucoid third domain upon binding to bovine chymotrypsin A(alpha).
    Song J; Markley JL
    J Mol Recognit; 2001; 14(3):166-71. PubMed ID: 11391787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemistry in a microenvironment of low pH, generated with the aid of an immobilized proteinase.
    Silver MS; Haskell JH
    Biochim Biophys Acta; 1990 May; 1039(1):25-32. PubMed ID: 2354198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of a selenium-containing substrate of alpha-chymotrypsin. Selenium-77 nuclear magnetic resonance observation of an acyl-alpha-chymotrypsin intermediate.
    Mullen GP; Dunlap RB; Odom JD
    Biochemistry; 1986 Sep; 25(19):5625-32. PubMed ID: 3778877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of 13C n.m.r. and saturation transfer to detect tetrahedral intermediates in reactions catalysed by chymotrypsin and also in an amide inhibitor complex.
    O'Connell TP; Finucane MD; Malthouse JP
    Biochem Soc Trans; 1994 Feb; 22(1):30S. PubMed ID: 8206252
    [No Abstract]   [Full Text] [Related]  

  • 20. Thermodynamics of binding to native alpha-chymotrypsin and to forms of alpha-chymotrypsin in which catalytically essential residues are modified; a study of "productive" and "nonproductive" associations.
    Schultz RM; Konovessi-Panayotatos A; Peters JR
    Biochemistry; 1977 May; 16(10):2194-202. PubMed ID: 861205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.