These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 420843)

  • 1. A comparison of the intrinsic protein kinase activities of membrane preparations from various tissues.
    Carstens M; Weller M
    Biochim Biophys Acta; 1979 Mar; 551(2):420-31. PubMed ID: 420843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization in the synaptic junction of the cyclic AMP stimulated intrinsic protein kinase activity of synaptosomal plasma membranes.
    Weller M; Morgan IG
    Biochim Biophys Acta; 1976 Apr; 433(1):223-7. PubMed ID: 177081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Comparative characteristics of membrane-bound and solubilized 3':5'-AMP-dependent protein kinase from myocardium sarcoplasmic reticulum membranes].
    Kurskii MD; Vorobets ZA
    Biokhimiia; 1980 Mar; 45(3):430-7. PubMed ID: 6246970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The soluble, cyclic AMP-stimulated protein kinase catalyses the phosphorylation of different membrane proteins from those which are phosphorylated by the membrane bound enzyme.
    Carstens M; Weller M
    Mol Cell Biochem; 1981 Oct; 40(2):95-104. PubMed ID: 6273713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasma membrane cyclic AMP-dependent protein phosphorylation system in L6 myoblasts.
    Scott RE; Dousa TP
    Biochim Biophys Acta; 1978 Jun; 509(3):499-509. PubMed ID: 207325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The rate of calcium uptake into sarcoplasmic reticulum of cardiac muscle and skeletal muscle. Effects of cyclic AMP-dependent protein kinase and phosphorylase b kinase.
    Schwartz A; Entman ML; Kaniike K; Lane LK; Van Winkle WB; Bornet EP
    Biochim Biophys Acta; 1976 Feb; 426(1):57-72. PubMed ID: 2325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of protein kinase activities in subcellular fractions of rat brain.
    Weller M; Morgan I
    Biochim Biophys Acta; 1976 Jul; 436(3):675-85. PubMed ID: 182225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of rat brain (Na+ +K+)-ATPase activity by cyclic AMP.
    Lingham RB; Sen AK
    Biochim Biophys Acta; 1982 Jun; 688(2):475-85. PubMed ID: 6285969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylation of a 100 000 dalton component and its relationship to calcium transport in sarcoplasmic reticulum from rabbit skeletal muscle.
    Galani-Kranias E; Bick R; Schwartz A
    Biochim Biophys Acta; 1980 Apr; 628(4):438-50. PubMed ID: 6245711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of adenosine 3' : 5'-monophosphate and guanosine 3' : 5'-monophosphate on calcium uptake and phosphorylation in membrane fractions of vascular smooth muscle.
    Thorens S; Haeusler G
    Biochim Biophys Acta; 1978 Sep; 512(2):415-28. PubMed ID: 213115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein kinase activity in membrane preparations from ox brain. Stimulation of intrinsic activity by adenosine 3':5'-cyclic monophosphate.
    Weller M; Rodnight R
    Biochem J; 1973 Mar; 132(3):483-92. PubMed ID: 4353379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defective cyclic adenosine 3'-5'-monophosphate-dependent phosphorylation of plasma membrane proteins in chemically and virally transformed cells.
    Scott RE; Dousa TP
    Cancer Res; 1980 Aug; 40(8 Pt 1):2860-8. PubMed ID: 6248215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two different mechanisms for activation of cyclic PIP synthase: by a G protein or by protein tyrosine phosphorylation.
    Wasner HK; Gebel M; Hucken S; Schaefer M; Kincses M
    Biol Chem; 2000 Feb; 381(2):145-53. PubMed ID: 10746746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective phosphorylation of a nuclear envelope polypeptide by an endogenous protein kinase.
    Lam KS; Kasper CB
    Biochemistry; 1979 Jan; 18(2):307-11. PubMed ID: 217409
    [No Abstract]   [Full Text] [Related]  

  • 15. [Endogenous phosphorylation of sarcoplasmic reticulum fragments of rabbit fast skeletal muscles].
    Kurskiĭ MD; Kondratiuk TP; Osipenko AA; Fedorov AN; Grigor'eva VA
    Biokhimiia; 1982 Jan; 47(1):34-42. PubMed ID: 6279180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subcellular localization and hormone sensitivity of adipocyte cyclic AMP phosphodiesterase.
    Anderson NG; Kilgour E; Houslay MD
    Biochem J; 1989 Sep; 262(3):867-72. PubMed ID: 2556112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Cyclic nucleotide-dependent endogenous phosphorylation of rabbit myometrium membranes].
    Kurskiĭ MD; Kondratiuk TP; Bychenok SF
    Biokhimiia; 1985 Feb; 50(2):318-24. PubMed ID: 2985128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptic membrane proteins as substrates for cyclic AMP-stimulated protein phosphorylation in various regions of rat brain.
    Reddington M; Mehl E
    Biochim Biophys Acta; 1979 Aug; 555(2):230-8. PubMed ID: 224925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic unit-independent phosphorylation and dephosphorylation of type II regulatory subunit of cyclic AMP-dependent protein kinase in rat liver plasma membranes.
    Kiss Z; Luo Y; Vereb G
    Biochem J; 1986 Feb; 234(1):163-8. PubMed ID: 3010951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclic nucleotide-dependent phosphorylation of endogenous proteins in bovine adrenocortical cell membranes.
    Bristow AF; Schulster D; Rodnight R
    Biochim Biophys Acta; 1981 Jun; 675(1):24-8. PubMed ID: 6266494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.