BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 4208545)

  • 1. Transplantation of posterior polar plasm in Drosophila. Induction of germ cells at the anterior pole of the egg.
    Illmensee K; Mahowald AP
    Proc Natl Acad Sci U S A; 1974 Apr; 71(4):1016-20. PubMed ID: 4208545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interspecific transplantation of polar plasm between Drosophila embryos.
    Mahowald AP; Illmensee K; Turner FR
    J Cell Biol; 1976 Aug; 70(2 pt 1):358-73. PubMed ID: 820700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrially encoded 16S large ribosomal RNA is concentrated in the posterior polar plasm of early Drosophila embryos but is not required for pole cell formation.
    Ding D; Whittaker KL; Lipshitz HD
    Dev Biol; 1994 Jun; 163(2):503-15. PubMed ID: 7515364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of egg rotation on the differentiation of primordial germ cells in Xenopus laevis.
    Cleine JH; Dixon KE
    J Embryol Exp Morphol; 1985 Dec; 90():79-99. PubMed ID: 3834040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial small ribosomal RNA is present on polar granules in early cleavage embryos of Drosophila melanogaster.
    Kashikawa M; Amikura R; Nakamura A; Kobayashi S
    Dev Growth Differ; 1999 Aug; 41(4):495-502. PubMed ID: 10466937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Kinematics and ultrastructure of plasmic factor regions in the egg of Wachtliella persicariae L. (Diptera) : II. The behaviour of ooplasmic partial systems after centrifugation of eggs in the stage of four cleavage nuclei].
    Wolf R
    Wilhelm Roux Arch Entwickl Mech Org; 1969 Mar; 163(1):40-80. PubMed ID: 28304448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functions of maternal mRNA as a cytoplasmic factor responsible for pole cell formation in Drosophila embryos.
    Togashi S; Kobayashi S; Okada M
    Dev Biol; 1986 Dec; 118(2):352-60. PubMed ID: 2431932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental analysis of grandchildless (gs(1)N441) mutation in Drosophila melanogaster; abnormal formation of pole cells.
    Niki Y
    Jpn J Genet; 1988 Feb; 63(1):23-32. PubMed ID: 3152579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic Hsp83 RNA localization during Drosophila oogenesis and embryogenesis.
    Ding D; Parkhurst SM; Halsell SR; Lipshitz HD
    Mol Cell Biol; 1993 Jun; 13(6):3773-81. PubMed ID: 7684502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. cappuccino and spire: two unique maternal-effect loci required for both the anteroposterior and dorsoventral patterns of the Drosophila embryo.
    Manseau LJ; Schüpbach T
    Genes Dev; 1989 Sep; 3(9):1437-52. PubMed ID: 2514120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of u.v. irradiation of the vegetal pole of Xenopus laevis eggs on the presumptive primordial germ cells.
    Züst B; Dixon KE
    J Embryol Exp Morphol; 1975 Aug; 34(1):209-20. PubMed ID: 1237530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Kinematics and ultrastructure of plasmic factor regions in the egg of Wachtliella persicariae L. (Diptera) : I. The behaviour of ooplasmic partial systems in the normal egg].
    Wolf R
    Wilhelm Roux Arch Entwickl Mech Org; 1969 Jun; 162(2):121-160. PubMed ID: 28304529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Requirement for a noncoding RNA in Drosophila polar granules for germ cell establishment.
    Nakamura A; Amikura R; Mukai M; Kobayashi S; Lasko PF
    Science; 1996 Dec; 274(5295):2075-9. PubMed ID: 8953037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abdominal segmentation, pole cell formation, and embryonic polarity require the localized activity of oskar, a maternal gene in Drosophila.
    Lehmann R; Nüsslein-Volhard C
    Cell; 1986 Oct; 47(1):141-52. PubMed ID: 3093084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Restroation of the capacity to form pole cells in u.v.-irradiated Drosophila embryos.
    Warn R
    J Embryol Exp Morphol; 1975 Jul; 33(4):1003-11. PubMed ID: 809528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytological analyses of factors which determine the number of primordial germ cells (PGCs) in Xenopus laevis.
    Akita Y; Wakahara M
    J Embryol Exp Morphol; 1985 Dec; 90():251-65. PubMed ID: 3834031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The autonomous function of germ plasm in a somatic region of the Drosophila egg.
    Illmensee K; Mahowald AP
    Exp Cell Res; 1976 Jan; 97():127-40. PubMed ID: 812709
    [No Abstract]   [Full Text] [Related]  

  • 18. Essential role of mitochondrially encoded large rRNA for germ-line formation in Drosophila embryos.
    Iida T; Kobayashi S
    Proc Natl Acad Sci U S A; 1998 Sep; 95(19):11274-8. PubMed ID: 9736726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delocalization of polar plasm components caused by grandchildless mutations, gs(1)N26 and gs(1)N441, in Drosophila melanogaster.
    Iida T; Kobayashi S
    Dev Growth Differ; 2000 Feb; 42(1):53-60. PubMed ID: 10831043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Essential role of the posterior morphogen nanos for germline development in Drosophila.
    Kobayashi S; Yamada M; Asaoka M; Kitamura T
    Nature; 1996 Apr; 380(6576):708-11. PubMed ID: 8614464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.