These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 4209366)

  • 41. Architectonic natures of proteins bound to Rhodospirillum rubrum chromatophores as detected by trypsin treatment and sonication.
    Tsuji K; Tanaka K; Sakata-Sogawa K; Soe G; Kakuno T; Yamashita J; Horio T
    J Biochem; 1983 Mar; 93(3):699-707. PubMed ID: 6409893
    [No Abstract]   [Full Text] [Related]  

  • 42. [Photooxidation and light-induced transport of phenazine methosulfate in chromatophores of purple bacteria].
    Bulychev AA; Grishanova NP; Karagulian AK; Kononenko AA; Kurella GA
    Biokhimiia; 1981 Jun; 46(6):1057-66. PubMed ID: 6789897
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Measurement of transmembrane potentials in Rhodospirillum rubrum chromatophores with an oxacarbocyanine dye.
    Pick U; Avron M
    Biochim Biophys Acta; 1976 Jul; 440(1):189-204. PubMed ID: 820380
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Postillumination adenosine triphosphate synthesis in Rhodospirillum rubrum chromatophores. II. Stimulation by a K+ diffusion potential.
    Gromet-Elhanan Z; Leiser M
    J Biol Chem; 1975 Jan; 250(1):90-3. PubMed ID: 49352
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Photoinduced changes in dielectric losses in the microwave region in chromatophores of Rhodospirillum rubrum photosynthesizing bacteria].
    Skachko MP; Trukhan EM; Kharchenko SG
    Biofizika; 1980; 25(3):564-6. PubMed ID: 6772240
    [No Abstract]   [Full Text] [Related]  

  • 46. Carbon monoxide-dependent growth of Rhodospirillum rubrum.
    Kerby RL; Ludden PW; Roberts GP
    J Bacteriol; 1995 Apr; 177(8):2241-4. PubMed ID: 7721719
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Acid-soluble nucleotides of the phototrophic bacterium Rhodospirillum rubrum during growth in light and in darkness].
    Shadi A; Mansurova SE; Cherniad'ev II; Kulaev IS
    Mikrobiologiia; 1975; 44(2):206-9. PubMed ID: 818480
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The bacteriochlorophyll absorption band shifts linked with the energy state of photosynthetic bacteria membranes.
    Barsky EL; Samuilov VD
    J Bioenerg; 1973 Apr; 4(3):391-5. PubMed ID: 4200406
    [No Abstract]   [Full Text] [Related]  

  • 49. A spin-label study of the photosynthetic bacterium, Rhodospirillum rubrum; Reduction and regeneration of nitroxide spin-labels.
    Maruyama K; Onishi S
    J Biochem; 1974 May; 75(5):1153-64. PubMed ID: 4369732
    [No Abstract]   [Full Text] [Related]  

  • 50. [Dark metabolism of acetate in Rhodospirillum rubrum cells, grown under photoheterotropic conditions].
    Berg IA; Krasil'nikova EN; Ivanovskiĭ RN
    Mikrobiologiia; 2000; 69(1):13-8. PubMed ID: 10808482
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Study of microwave photolosses in chromatophores of photosynthesizing Rhodospirillum rubrum bacteria].
    Skachkov MP; Trukhan EM; Kharchenko SG
    Biofizika; 1981; 26(1):69-73. PubMed ID: 6784778
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Surface charge modifications do not affect the hydrolytic activity of membrane-bound pyrophosphatase of Rhodospirillum rubrum.
    Sosa A; Celis H
    Biochem Mol Biol Int; 1993 Aug; 30(6):1135-41. PubMed ID: 8220258
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Studies on ion transport in cells of photosynthetic bacteria. II. Analysis of reversed hydrogen ion change.
    Kobayashi Y; Nishimura M
    J Biochem; 1973 Dec; 74(6):1227-32. PubMed ID: 4205459
    [No Abstract]   [Full Text] [Related]  

  • 54. Tributyl phosphate degradation by Rhodopseudomonas palustris and other photosynthetic bacteria.
    Berne C; Allainmat B; Garcia D
    Biotechnol Lett; 2005 Apr; 27(8):561-6. PubMed ID: 15973490
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The fine structure of "resting bodies" of Bdellovibrio sp. strain W developed in Rhodospirillum rubrum.
    Hoeniger JF; Ladwig R; Moor H
    Can J Microbiol; 1972 Jan; 18(1):87-92. PubMed ID: 4110832
    [No Abstract]   [Full Text] [Related]  

  • 56. [Formation of different forms of hydrogenases in Rhodospirillum rubrum depending on the growing conditions].
    Gogotov IN; Zorin NA; Ushakov VM
    Mikrobiologiia; 1973; 42(1):21-5. PubMed ID: 4208935
    [No Abstract]   [Full Text] [Related]  

  • 57. Identification of chromatophore membrane protein complexes formed under different nitrogen availability conditions in Rhodospirillum rubrum.
    Selao TT; Branca R; Chae PS; Lehtiö J; Gellman SH; Rasmussen SG; Nordlund S; Norén A
    J Proteome Res; 2011 Jun; 10(6):2703-14. PubMed ID: 21443180
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The influence of 2-hydroxybiphenyl on membranes of Rhodospirillum rubrum.
    Maudinas B; Oelze J; Villoutreix J; Reisinger O
    Arch Mikrobiol; 1973 Nov; 93(3):219-28. PubMed ID: 4130016
    [No Abstract]   [Full Text] [Related]  

  • 59. Membrane differentiation in phototrophically growing Rhodospirillum rubrum during transition from low to high light intensity.
    Irschik H; Oelze J
    Biochim Biophys Acta; 1973 Nov; 330(1):80-9. PubMed ID: 4148662
    [No Abstract]   [Full Text] [Related]  

  • 60. Sulfide utilization by purple nonsulfur bacteria.
    Hansen TA; van Gemerden H
    Arch Mikrobiol; 1972; 86(1):49-56. PubMed ID: 4628180
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.