These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 4209741)

  • 1. Spin-lattice relaxation times of imidazole protons and their relevance to NMR studies of proteins.
    Wasylishen RE; Cohen JS
    Nature; 1974 Jun; 249(460):847-50. PubMed ID: 4209741
    [No Abstract]   [Full Text] [Related]  

  • 2. Determination of the tautomeric form of the imidazole ring of L-histidine in basic solution by carbon-13 magnetic resonance spectroscopy.
    Reynolds WF; Peat IR; Freedman MH; Lyerla JR
    J Am Chem Soc; 1973 Jan; 95(2):328-31. PubMed ID: 4687673
    [No Abstract]   [Full Text] [Related]  

  • 3. Natrual-abundance carbon-13 nuclear magnetic resonance studies in 20-mm sample tubes. Observation of numerous single-carbon resonances of hen egg-white lysozyme.
    Allerhand A; Childers RF; Oldfield E
    Biochemistry; 1973 Mar; 12(7):1335-41. PubMed ID: 4735301
    [No Abstract]   [Full Text] [Related]  

  • 4. Assignment of the imidazole ring nitrogen protons of histidine 48 in the proton NMR spectrum of ribonuclease A in water solution.
    Patel DJ; Canuel LL; Bovey FA; Woodward C
    Biochim Biophys Acta; 1975 Aug; 400(2):275-82. PubMed ID: 240416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Fourier transform NMR study of the thermal denaturation of ribonuclease A at low pH.
    Matthews CR; Westmoreland DG
    Ann N Y Acad Sci; 1973 Dec; 222():240-54. PubMed ID: 4522431
    [No Abstract]   [Full Text] [Related]  

  • 6. Carbon-13 nuclear-magnetic-resonance studies on selected amino acids, peptides, and proteins.
    Freedman MH; Lyerla JR; Chaiken IM; Cohen JS
    Eur J Biochem; 1973 Jan; 32(2):215-26. PubMed ID: 4631542
    [No Abstract]   [Full Text] [Related]  

  • 7. Protein mobility and self-association by deuterium nuclear magnetic resonance.
    Wooten JB; Cohen JS
    Biochemistry; 1979 Sep; 18(19):4188-91. PubMed ID: 39594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear magnetic resonance titration curves of histidine ring protons. 3. Ribonuclease.
    Schechter AN; Sachs DH; Heller SR; Shrager RI; Cohen JS
    J Mol Biol; 1972 Oct; 71(1):39-48. PubMed ID: 4634986
    [No Abstract]   [Full Text] [Related]  

  • 9. Carbon-13 nuclear magnetic resonance studies of structure and function in thyrotropin-releasing factor. Determination of the tautomeric form of histidine and relationship to biology activity.
    Deslauriers R; McGregor WH; Sarantakis D; Smith IC
    Biochemistry; 1974 Aug; 13(17):3443-8. PubMed ID: 4211032
    [No Abstract]   [Full Text] [Related]  

  • 10. The assignment of an exchangeable low-field NH proton resonance of ribonuclease A to the active-site histidine-119.
    Griffin JH; Cohen JS; Schechter AN
    Biochemistry; 1973 May; 12(11):2096-9. PubMed ID: 4735881
    [No Abstract]   [Full Text] [Related]  

  • 11. Carbon 13 nuclear magnetic resonance spectroscopy of myoglobins carboxymethylated with enriched (2- 13 C)bromoacetate.
    Nigen AM; Keim P; Marshall RC; Morrow JS; Vigna RA; Gurd FR
    J Biol Chem; 1973 May; 248(10):3724-32. PubMed ID: 4735715
    [No Abstract]   [Full Text] [Related]  

  • 12. NMR relaxation studies of the unfolding and refolding of staphylococcal nuclease at low pH.
    Arata Y; Khalifah R; Jardetzky O
    Ann N Y Acad Sci; 1973 Dec; 222():230-9. PubMed ID: 4361856
    [No Abstract]   [Full Text] [Related]  

  • 13. Natural abundance carbon 13 nuclear magnetic resonance of cyanoferrimyoglobins and of some carboxymethyl derivatives.
    Nigen AM; Keim P; Marshall RC; Glushko V; Lawson PJ; Gurd FR
    J Biol Chem; 1973 May; 248(10):3716-23. PubMed ID: 4735714
    [No Abstract]   [Full Text] [Related]  

  • 14. Nuclear magnetic resonance titration curves of histidine ring protons. IV. The effects of phosphate and sulfate on ribonuclease.
    Cohen JS; Griffin JH; Schechter AN
    J Biol Chem; 1973 Jun; 248(12):4305-10. PubMed ID: 4736427
    [No Abstract]   [Full Text] [Related]  

  • 15. Nuclear magnetic resonance study of the thermal denaturation of ribonuclease A: implications for multistate behavior at low pH.
    Westmoreland DG; Matthews CR
    Proc Natl Acad Sci U S A; 1973 Mar; 70(3):914-8. PubMed ID: 4515001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon-13 NMR spectra of tryptophan, tryptophan peptides and of native and denatured proteins.
    Bradbury JH; Norton RS
    Biochim Biophys Acta; 1973 Nov; 328(1):10-9. PubMed ID: 4796925
    [No Abstract]   [Full Text] [Related]  

  • 17. Dynamic structure of proteins in solid state. 1H and 13C NMR relaxation study.
    Krushelnitsky AG; Fedotov VD; Spevacek J; Straka J
    J Biomol Struct Dyn; 1996 Oct; 14(2):211-24. PubMed ID: 8913857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of protein reorientational diffusion in solution by 13C off-resonance rotating frame spin-lattice relaxation: effect of polydispersity.
    Morgan CF; Schleich T; Caines GH
    Biopolymers; 1990 Feb; 29(3):501-7. PubMed ID: 2331512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of proteins by nuclear magnetic resonance.
    Yamane T
    J Agric Food Chem; 1971; 19(4):683-91. PubMed ID: 4950506
    [No Abstract]   [Full Text] [Related]  

  • 20. An NMR method for characterizing conformation changes in proteins.
    Millett F; Raftery MA
    Biochem Biophys Res Commun; 1972 May; 47(3):625-32. PubMed ID: 5038667
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.