BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 4210)

  • 1. Biosynthesis of chloramphenicol in Streptomyces sp. 3022a. Identification of p-amino-L-phenylalanine as a product from the action of arylamine synthetase on chorismic acid.
    Jones A; Vining LC
    Can J Microbiol; 1976 Feb; 22(2):237-44. PubMed ID: 4210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis of chloramphenicol in Streptomyces species 3022a: the nature of the arylamine synthetase system.
    Francis MM; Westlake DW
    Can J Microbiol; 1979 Dec; 25(12):1408-15. PubMed ID: 583399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis of chloramphenicol in Streptomyces species 3022a. Isotope incorporation experiments with (G-14C) chorismic, (G-14C) prephenic, and (G-14C, 6-3H) shikimic acids.
    Emes A; Floss HG; Lowe DA; Westlake DW; Vining LC
    Can J Microbiol; 1974 Mar; 20(3):347-52. PubMed ID: 4822053
    [No Abstract]   [Full Text] [Related]  

  • 4. Biosynthesis of chloramphenicol in Streptomyces sp. 3022a. Properties of an aminotransferase accepting p-aminophenylalanine as a substrate.
    Jones A; Francis MM; Vining LC
    Can J Microbiol; 1978 Mar; 24(3):238-44. PubMed ID: 647477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of chloramphenicol synthesis in Streptomyces sp. 3022a. Properties of arylamine synthetase, an enzyme involved in antibiotic biosynthesis.
    Jones A; Westlake DW
    Can J Microbiol; 1974 Nov; 20(11):1599-611. PubMed ID: 4373156
    [No Abstract]   [Full Text] [Related]  

  • 6. Regulation of chloramphenicol synthesis in Streptomyces sp. 3022a. Branch-point enzymes of the shikimic acid pathway.
    Lowe DA; Westlake DW
    Can J Biochem; 1972 Oct; 50(10):1064-73. PubMed ID: 5084351
    [No Abstract]   [Full Text] [Related]  

  • 7. Isolation and characterization of Streptomyces venezuelae mutants blocked in chloramphenicol biosynthesis.
    Doull J; Ahmed Z; Stuttard C; Vining LC
    J Gen Microbiol; 1985 Jan; 131(1):97-104. PubMed ID: 3989509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis of p-aminophenylalanine: part of a general scheme for the biosynthesis of chorisimic acid derivatives.
    Dardenne GA; Larsen PO; Wieczorkowska E
    Biochim Biophys Acta; 1975 Feb; 381(2):416-23. PubMed ID: 1120153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of chorismate-derived antibiotic production.
    Malik VS
    Adv Appl Microbiol; 1979; 25():75-93. PubMed ID: 121030
    [No Abstract]   [Full Text] [Related]  

  • 10. Biosynthesis of the antibiotic 2,5-dihydrophenylalanine by Streptomyces arenae.
    Shimada K; Hook DJ; Warner GF; Floss HG
    Biochemistry; 1978 Jul; 17(15):3054-8. PubMed ID: 698184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origin of p-aminobenzoic acid from chorismic rather than iso-chorismic acid in Enterobacter aerogenes and Streptomyces species.
    Johanni M; Hofmann P; Leistner E
    Arch Biochem Biophys; 1989 Jun; 271(2):495-501. PubMed ID: 2786373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of chloramphenicol synthesis in Streptomyces sp. 3022a. 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthetase.
    Lowe DA; Westlake DW
    Can J Biochem; 1971 Apr; 49(4):448-55. PubMed ID: 5552828
    [No Abstract]   [Full Text] [Related]  

  • 13. Characterization and regulation of anthranilate synthetase from a chloramphenicol-producing streptomycete.
    Francis MM; Vining LC; Westlake DW
    J Bacteriol; 1978 Apr; 134(1):10-6. PubMed ID: 306386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporation of chorismic acid and 4-aminobenzoic acid into the 4-hydroxyaniline moiety of N-(gamma-L-glutamyl)-4-hydroxyaniline in Agaricus bisporus.
    Tsuji H; Ogawa T; Bando N; Sasaoka K
    Biochim Biophys Acta; 1985 Jun; 840(2):287-90. PubMed ID: 3873258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The shikimate pathway. Part V. Chorismic acid and chorismate mutase.
    Ife RJ; Ball LF; Lowe P; Haslam E
    J Chem Soc Perkin 1; 1976; (16):1776-83. PubMed ID: 987064
    [No Abstract]   [Full Text] [Related]  

  • 16. Biosynthesis of phenylalanine, tyrosine, 3-(3-carbocyphenyl) alanine and 3-(3-carbocy-4-hydroxyphenyl) alanine in higher plants. Examples of the transformation possibilities for chorismic acid.
    Larsen PO; Onderka DK; Floss HG
    Biochim Biophys Acta; 1975 Feb; 381(2):397-408. PubMed ID: 1120151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. p-Aminophenylalanine and threo-p-aminophenylserine; specific precursors of chloramphenicol.
    McGrath R; Siddiqueullah M; Vining LC; Sala F; Westlake DW
    Biochem Biophys Res Commun; 1967 Nov; 29(4):576-81. PubMed ID: 16496538
    [No Abstract]   [Full Text] [Related]  

  • 18. Metabolites of a blocked chloramphenicol producer.
    Lewis EA; Adamek TL; Vining LC; White RL
    J Nat Prod; 2003 Jan; 66(1):62-6. PubMed ID: 12542347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the carbon source in regulating chloramphenicol production by Streptomyces venezuelae: studies in batch and continuous cultures.
    Bhatnagar RK; Doull JL; Vining LC
    Can J Microbiol; 1988 Nov; 34(11):1217-23. PubMed ID: 3208198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetics and biochemical studies of chloramphenicol-nonproducing mutants of Streptomyces venezuelae carrying plasmid.
    Akagawa H; Okanishi M; Umezawa H
    J Antibiot (Tokyo); 1979 Jun; 32(6):610-20. PubMed ID: 468736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.