These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 4210)

  • 21. Influence of nitrogen source on formation of chloramphenicol in cultures of Streptomyces sp. 3022a.
    Westlake DW; Sala F; McGrath R; Vining LC
    Can J Microbiol; 1968 May; 14(5):587-93. PubMed ID: 5665980
    [No Abstract]   [Full Text] [Related]  

  • 22. Biosynthesis of chloramphenicol. II. p-Aminophenylalanine as a precursor of the p-nitrophenylserinol moiety.
    Siddiqueullah M; McGrath R; Vining LC
    Can J Biochem; 1967 Dec; 45(12):1881-9. PubMed ID: 4295530
    [No Abstract]   [Full Text] [Related]  

  • 23. Regulatory control of 3-deoxy-D-arabino-heptulosonic acid 7-phosphate synthetase in Streptomyces antibioticus.
    Murphy MF; Katz E
    Can J Microbiol; 1980 Aug; 26(8):874-80. PubMed ID: 6109562
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chorismic acid, a key metabolite in modification of tRNA.
    Hagervall TG; Jönsson YH; Edmonds CG; McCloskey JA; Björk GR
    J Bacteriol; 1990 Jan; 172(1):252-9. PubMed ID: 2104604
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mutational biosynthesis of a FK506 analogue containing a non-natural starter unit.
    Ban YH; Lee JH; Gu GR; Lee B; Mo S; Kwon HJ; Yoon YJ
    Mol Biosyst; 2013 May; 9(5):944-7. PubMed ID: 23223556
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Overexpression of the Nocardia lactamdurans alpha-aminoadipyl-cysteinyl-valine synthetase in Streptomyces lividans. The purified multienzyme uses cystathionine and 6-oxopiperidine 2-carboxylate as substrates for synthesis of the tripeptide.
    Coque JJ; de la Fuente JL; Liras P; Martín JF
    Eur J Biochem; 1996 Dec; 242(2):264-70. PubMed ID: 8973642
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chorismate mutase-catalyzed reaction of (+/-)-chorismic acid.
    Hoare JH; Berchtold GA
    Biochem Biophys Res Commun; 1982 May; 106(2):660-2. PubMed ID: 7049179
    [No Abstract]   [Full Text] [Related]  

  • 28. [Regulation of aromatic amino acid biosynthesis in streptomycetes].
    Görisch H
    Zentralbl Bakteriol Orig A; 1972 May; 220(1):298-300. PubMed ID: 4145581
    [No Abstract]   [Full Text] [Related]  

  • 29. A family of diiron monooxygenases catalyzing amino acid beta-hydroxylation in antibiotic biosynthesis.
    Makris TM; Chakrabarti M; Münck E; Lipscomb JD
    Proc Natl Acad Sci U S A; 2010 Aug; 107(35):15391-6. PubMed ID: 20713732
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biosynthesis of chloramphenicol.
    Westlake DW; Vining LC
    Biotechnol Bioeng; 1969 Nov; 11(6):1125-34. PubMed ID: 5365805
    [No Abstract]   [Full Text] [Related]  

  • 31. In vivo instability of chorismate causes substrate loss during fermentative production of aromatics.
    Winter G; Averesch NJ; Nunez-Bernal D; Krömer JO
    Yeast; 2014 Sep; 31(9):333-41. PubMed ID: 24981409
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparative synthesis of prephenate from chorismate by chorismate mutase immobilized on decylamine agarose.
    Görisch H
    Anal Biochem; 1977 Sep; 82(1):177-83. PubMed ID: 410323
    [No Abstract]   [Full Text] [Related]  

  • 33. Effect of chloramphenicol on its biosynthesis by Streptomyces species 3022a.
    Malik VS; Vining LC
    Can J Microbiol; 1972 Feb; 18(2):137-43. PubMed ID: 5018695
    [No Abstract]   [Full Text] [Related]  

  • 34. Nitrogen metabolism and chloramphenicol production in Streptomyces venezuelae.
    Shapiro S; Vining LC
    Can J Microbiol; 1983 Dec; 29(12):1706-14. PubMed ID: 6143605
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Suppression of nitrate utilization by ammonium and its relationship to chloramphenicol production in Streptomyces venezuelae.
    Shapiro S; Vining LC
    Can J Microbiol; 1984 Jun; 30(6):798-804. PubMed ID: 6488103
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improvement of chloramphenicol production in Streptomyces venezuelae ATCC 10712 by overexpression of the aroB and aroK genes catalysing steps in the shikimate pathway.
    Vitayakritsirikul V; Jaemsaeng R; Lohmaneeratana K; Thanapipatsiri A; Daduang R; Chuawong P; Thamchaipenet A
    Antonie Van Leeuwenhoek; 2016 Mar; 109(3):379-88. PubMed ID: 26715388
    [TBL] [Abstract][Full Text] [Related]  

  • 37. THE BIOSYNTHESIS OF PHENYLALANINE AND TYROSINE; ENZYMES CONVERTING CHORISMIC ACID INTO PREPHENIC ACID AND THEIR RELATIONSHIPS TO PREPHENATE DEHYDRATASE AND PREPHENATE DEHYDROGENASE.
    COTTON RG; GIBSON F
    Biochim Biophys Acta; 1965 Apr; 100():76-88. PubMed ID: 14323651
    [No Abstract]   [Full Text] [Related]  

  • 38. A novel L-glutamate oxidase from Streptomyces endus. Purification and properties.
    Böhmer A; Müller A; Passarge M; Liebs P; Honeck H; Müller HG
    Eur J Biochem; 1989 Jun; 182(2):327-32. PubMed ID: 2737205
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of an Unnatural Amino Acid Incorporation System in the Actinobacterial Natural Product Producer Streptomyces venezuelae ATCC 15439.
    He J; Van Treeck B; Nguyen HB; Melançon CE
    ACS Synth Biol; 2016 Feb; 5(2):125-32. PubMed ID: 26562751
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biosynthesis of o-succinylbenzoic acid. I: Cell free synthesis of o-succinylbenzoic acid from isochorismic acid in enzyme preparations from vitamin K producing bacteria.
    Weische A; Johanni M; Leistner E
    Arch Biochem Biophys; 1987 Jul; 256(1):212-22. PubMed ID: 3300552
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.