These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 4210023)

  • 1. Control of sn-glycerol 3-phosphate oxidation in brown adipose tissue mitochondria by calcium and acyl-CoA.
    Bukowiecki LJ; Lindberg O
    Biochim Biophys Acta; 1974 Apr; 348(1):115-25. PubMed ID: 4210023
    [No Abstract]   [Full Text] [Related]  

  • 2. Gylcerol-3-phosphate shuttle and its function in intermediary metabolism of hamster brown-adipose tissue.
    Houstĕk J; Cannon B; Lindberg O
    Eur J Biochem; 1975 May; 54(1):11-8. PubMed ID: 168075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial from hamster brown-adipose tissue. Regulation of respiration in vitro by variations in volume of the matrix compartment.
    Nicholls DG; Grav HJ; Lindberg O
    Eur J Biochem; 1972 Dec; 31(3):526-33. PubMed ID: 4650156
    [No Abstract]   [Full Text] [Related]  

  • 4. Regulation of inorganic phosphate exchange in brown adipose tissue mitochondria.
    Christiansen EN; Wojtczak L
    Comp Biochem Physiol B; 1974 Dec; 49(4):579-92. PubMed ID: 4434731
    [No Abstract]   [Full Text] [Related]  

  • 5. Palmitoyl coenzyme A: a possible physiological regulator of nucleotide binding to brown adipose tissue mitochondria.
    Cannon B; Sundin U; Romert L
    FEBS Lett; 1977 Feb; 74(1):43-6. PubMed ID: 838074
    [No Abstract]   [Full Text] [Related]  

  • 6. The effect of ATP and carnitine on the endogenous respiration of mitochondria from brown adipose tissue.
    Drahota Z; Honová E; Hahn P
    Experientia; 1968 May; 24(5):431-2. PubMed ID: 5674966
    [No Abstract]   [Full Text] [Related]  

  • 7. Partial protection against erucoyl-carnitine inhibition in hamster brown-adipose-tissue mitochondria is due to high CoA levels: a comparison with rat brown-adipose-tissue mitochondria.
    Alexson S; Nedergaard J; Cannon B
    Comp Biochem Physiol B; 1986; 83(1):191-6. PubMed ID: 3943304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of fatty-acid oxidation in brown-adipose-tissue mitochondria.
    Cannon B
    Eur J Biochem; 1971 Nov; 23(1):125-35. PubMed ID: 5127377
    [No Abstract]   [Full Text] [Related]  

  • 9. Dual role of free fatty acids in regulation of mitochondrial L-glycerol-3-phosphate dehydrogenase.
    Rauchová H; Beleznai Z; Drahota Z
    Biochem Mol Biol Int; 1993 May; 30(1):139-48. PubMed ID: 8358326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of a specific endogenous fatty acid fraction in the coupling-uncoupling mechanism of oxidative phosphorylation of brown adipose tissue.
    Bulychev A; Kramar R; Drahota Z; Lindberg O
    Exp Cell Res; 1972 May; 72(1):169-87. PubMed ID: 4260232
    [No Abstract]   [Full Text] [Related]  

  • 11. Coenzyme Q-pool function in glycerol-3-phosphate oxidation in hamster brown adipose tissue mitochondria.
    Rauchová H; Battino M; Fato R; Lenaz G; Drahota Z
    J Bioenerg Biomembr; 1992 Apr; 24(2):235-41. PubMed ID: 1326518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relationship between palmitoyl-coenzyme A synthetase activity and esterification of sn-glycerol 3-phosphate in rat liver mitochondria.
    Sánchez M; Nicholls DG; Brindley DN
    Biochem J; 1973 Apr; 132(4):697-706. PubMed ID: 4721605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative phosphorylation and compartmentation of fatty acid metabolism in brown fat mitochondria.
    Hittelman KJ; Lindberg O; Cannon B
    Eur J Biochem; 1969 Nov; 11(1):183-92. PubMed ID: 5353600
    [No Abstract]   [Full Text] [Related]  

  • 14. The regulation of sn-glycerol-3-phosphate acylation by cytidine nucleotides in rat brain cerebral hemispheres.
    Possmayer F; Mudd JB
    Biochim Biophys Acta; 1971 Jul; 239(2):217-33. PubMed ID: 4330332
    [No Abstract]   [Full Text] [Related]  

  • 15. [Oxidative phosphorylation by mitochondria from brown adipose tissue].
    Hohorst HJ; Rafael J
    Hoppe Seylers Z Physiol Chem; 1968 Feb; 349(2):268-70. PubMed ID: 5677015
    [No Abstract]   [Full Text] [Related]  

  • 16. Glycerophosphate-dependent peroxide production by brown fat mitochondria from newborn rats.
    Drahota Z; Rauchova H; Jesina P; Vojtísková A; Houstek J
    Gen Physiol Biophys; 2003 Mar; 22(1):93-102. PubMed ID: 12870704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of glycerol 3-phosphate oxidation in mitochondria by changes in membrane microviscosity.
    Amler E; Rauchová H; Svobodová J; Drahota Z
    FEBS Lett; 1986 Sep; 206(1):1-3. PubMed ID: 3758342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Respiration of rat lung mitochondria and the influence of Ca 2+ on substrate utilization.
    Fisher AB; Scarpa A; LaNoue KF; Bassett D; Williamson JR
    Biochemistry; 1973 Mar; 12(7):1438-45. PubMed ID: 4348834
    [No Abstract]   [Full Text] [Related]  

  • 19. High activity of alpha-glycerophosphate oxidation by human placental mitochondria.
    Swierczyński J; Scislowski P; Aleksandrowicz Z
    Biochim Biophys Acta; 1976 Mar; 429(1):46-54. PubMed ID: 816383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Steady-state kinetics of reduction of coenzyme Q analogs by glycerol-3-phosphate dehydrogenase in brown adipose tissue mitochondria.
    Rauchová H; Fato R; Drahota Z; Lenaz G
    Arch Biochem Biophys; 1997 Aug; 344(1):235-41. PubMed ID: 9244403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.