These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 4210308)

  • 1. Synthesis of free ATP from membrane-bound ATP in chromatophores of Rhodospirillum rubrum.
    Lutz HU; Dahl JS; Bachofen R
    Biochim Biophys Acta; 1974 Jun; 347(3):359-70. PubMed ID: 4210308
    [No Abstract]   [Full Text] [Related]  

  • 2. Competition between Pi and pH indicators in photosynthetic ATP formation in chromatophores of Rhodospirillum rubrum.
    Hosoi K; Yoshimura S; Soe G; Kakuno T; Horio T
    J Biochem; 1973 Dec; 74(6):1275-8. PubMed ID: 4205462
    [No Abstract]   [Full Text] [Related]  

  • 3. [Photophosphorylation and binding of phosphates to chromatophores in Rhodospirillum rubrum].
    Lutz HU; Bachofen R
    Zentralbl Bakteriol Orig A; 1972 May; 220(1):387-93. PubMed ID: 4145605
    [No Abstract]   [Full Text] [Related]  

  • 4. Postillumination adenosine triphosphate synthesis in Rhodospirillum rubrum chromatophores. I. Conditions for maximal yields.
    Leiser M; Gromet-Elhanan Z
    J Biol Chem; 1975 Jan; 250(1):84-9. PubMed ID: 237896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on the light-dependent synthesis of inorganic pyrophosphate by Rhodospirillum rubrum chromatophores.
    Guillory RJ; Fisher RR
    Biochem J; 1972 Sep; 129(2):571-81. PubMed ID: 4345276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Postillumination adenosine triphosphate synthesis in Rhodospirillum rubrum chromatophores. II. Stimulation by a K+ diffusion potential.
    Gromet-Elhanan Z; Leiser M
    J Biol Chem; 1975 Jan; 250(1):90-3. PubMed ID: 49352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy-linked reactions in photosynthetic bacteria. IX. Pi-PPi exchange in Rhodospirillum rubrum.
    Keister DL; Raveed NJ
    J Biol Chem; 1974 Oct; 249(20):6454-8. PubMed ID: 4371026
    [No Abstract]   [Full Text] [Related]  

  • 8. Electron and proton transport in Rhodospirillum rubrum chromatophores.
    Kakuno T; Hosoi K; Higuti T; Horio T
    J Biochem; 1973 Dec; 74(6):1193-203. PubMed ID: 4360811
    [No Abstract]   [Full Text] [Related]  

  • 9. The effect of aging resolved chromatophores of Rhodospirillum rubrum on the capacity to reconstitute the energy-linked transhydrogenation.
    Guber S; Konings AW; Guillory RJ
    Biochim Biophys Acta; 1972 Jan; 255(1):161-70. PubMed ID: 4400928
    [No Abstract]   [Full Text] [Related]  

  • 10. delta pH driven energy-linked NAD+ reduction in Rhodospirillum rubrum chromatophores.
    Nore BF
    Arch Biochem Biophys; 1989 Oct; 274(1):285-9. PubMed ID: 2505679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resolution of enzymes catalyzing energy-linked transhydrogenation. IV. Reconstitution of adenosine triphosphate-driven transhydrogenation in depleted chromatophores of Rhodospirillum rubrum by the transhydrogenase factor and a soluble oligomycin-insensitive Mg ++ -adenosine triphosphatase.
    Konings AW; Guillory RJ
    J Biol Chem; 1973 Feb; 248(3):1045-50. PubMed ID: 4630853
    [No Abstract]   [Full Text] [Related]  

  • 12. A carotenoprotein from chromatophoreses of Rhodospirillum rubrum.
    Schwenker U; Gingras G
    Biochem Biophys Res Commun; 1973 Mar; 51(1):94-9. PubMed ID: 4633529
    [No Abstract]   [Full Text] [Related]  

  • 13. Light-induced electron transfer, internal and external hydrogen ion changes, and phosphorylation in chromatophores of Rhodospirillum rubrum.
    Nishimura M; Kadota K; Chance B
    Arch Biochem Biophys; 1968 Apr; 125(1):308-17. PubMed ID: 5655426
    [No Abstract]   [Full Text] [Related]  

  • 14. Role of bound ADP in photosynthetic ATP formation by chromatophores from Rhodospirillum rubrum.
    Yammamoto N; Yoshimura S; Higuti T; Nishikawa K; Horio T
    J Biochem; 1972 Dec; 72(6):1397-406. PubMed ID: 4198252
    [No Abstract]   [Full Text] [Related]  

  • 15. Light-induced electron transfer reactions and adenosine triphosphate formation by Rhodospirillum rubrum chromatophores.
    Zaugg WS; Vernon LP; Helmer G
    Arch Biochem Biophys; 1967 Mar; 119(1):560-71. PubMed ID: 6052446
    [No Abstract]   [Full Text] [Related]  

  • 16. Effects of pH indicators on various activities of chromatophroes of Rhodospirillum rubrum.
    Hosoi K; Soe G; Kakuno T; Horio T
    J Biochem; 1975 Dec; 78(6):1331-46. PubMed ID: 5425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Polyphosphate biosynthesis in Rhodospirillum rubrum chromatophores].
    Shadi A; Mansurova SE; Tsydendambaev VD; Kulaev IS
    Mikrobiologiia; 1976; 45(2):333-6. PubMed ID: 180387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between photosynthetic and oxidative phosphorylations in chromatophores from light-grown cells of Rhodospirillum rubrum.
    Yamashita J; Yoshimura S; Matuo Y; Horio T
    Biochim Biophys Acta; 1967 Jul; 143(1):154-72. PubMed ID: 4292784
    [No Abstract]   [Full Text] [Related]  

  • 19. Absorption changes of carotenoids and bacteriochlorophyll in energized chromatophores of Rhodospirillum rubrum.
    Barsky EL; Samuilov VD
    Biochim Biophys Acta; 1973 Dec; 325(3):454-62. PubMed ID: 4360256
    [No Abstract]   [Full Text] [Related]  

  • 20. Delta pH and membrane potential in bacterial chromatophores.
    Schuldiner S; Padan E; Rottenberg H; Gromet-Elhanan Z; Avron M
    FEBS Lett; 1974 Dec; 49(2):174-7. PubMed ID: 4216516
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.