These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 4211209)

  • 21. Simultaneous production of three phenazine pigments by Pseudomonas aeruginosa Mac 436.
    Chang PC; Blackwood AC
    Can J Microbiol; 1969 May; 15(5):439-44. PubMed ID: 4977719
    [No Abstract]   [Full Text] [Related]  

  • 22. Methionine degradation by Pseudomonas fluorescens UK1 and its methionine-utilizing mutant.
    Laakso S; Söderling E; Nurmikko V
    J Gen Microbiol; 1976 Jun; 94(2):305-12. PubMed ID: 820833
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bacterial attack on phenolic ethers. Dealkylation of higher ethers and further observations on O-demethylases.
    Cartwright NJ; Holdom KS; Broadbent DA
    Microbios; 1971 Mar; 3(10):113-30. PubMed ID: 4147485
    [No Abstract]   [Full Text] [Related]  

  • 24. [Autoinduction of pyoluteorin and correlation between phenazine-1-carboxylic acid and pyoluteorin in Pseudomonas sp. M18].
    Ge YH; Zhao YH; Chen LJ; Miao J; Wen L
    Wei Sheng Wu Xue Bao; 2007 Jun; 47(3):441-6. PubMed ID: 17672302
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure and function of the phenazine biosynthetic protein PhzF from Pseudomonas fluorescens.
    Blankenfeldt W; Kuzin AP; Skarina T; Korniyenko Y; Tong L; Bayer P; Janning P; Thomashow LS; Mavrodi DV
    Proc Natl Acad Sci U S A; 2004 Nov; 101(47):16431-6. PubMed ID: 15545603
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Metabolic behavior of uniformly labelled C14-glutamate and 4-aminobutyrate U-C14 in Pseudomonas fluorescens].
    Ortiz JM; Cascales M; Santos-Ruiz A
    Ann Pharm Fr; 1972 May; 30(5):329-38. PubMed ID: 4627958
    [No Abstract]   [Full Text] [Related]  

  • 27. Incorporation of [14C]shikimate into plenazines and their further metabolism by Pseudomonas phenazinium.
    Byng GS; Turner JM
    Biochem J; 1977 Apr; 164(1):139-45. PubMed ID: 880226
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of carbon source on pyrimidine formation in Pseudomonas fluorescens ATCC 13525.
    West TP
    Microbiol Res; 2005; 160(4):337-42. PubMed ID: 16255137
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A qualitative demonstration of the degradation of folic acid by Pseudomonas fluorescens UK-1.
    Soini J; Majasaari K
    Acta Chem Scand; 1973; 27(6):2115-20. PubMed ID: 4201623
    [No Abstract]   [Full Text] [Related]  

  • 30. Metabolism of gallic acid and syringic acid by Pseudomonas putida.
    Tack BF; Chapman PJ; Dagley S
    J Biol Chem; 1972 Oct; 247(20):6438-43. PubMed ID: 4342601
    [No Abstract]   [Full Text] [Related]  

  • 31. Studies on the degradation of pterine and pterine-6-carboxylic acid by Pseudomonas fluorescens UK-1.
    Soini J; Backman A
    Acta Chem Scand B; 1975; 29(6):710-4. PubMed ID: 811029
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Automated micromethod for the determination of the utilization of carbon sources by clinically significant Pseudomonas species].
    Kämpfer P; Bette W; Dott W
    Zentralbl Bakteriol Mikrobiol Hyg A; 1987 Jun; 265(1-2):62-73. PubMed ID: 3118596
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Degradation of p-methoxybenzoate by cell-free extracts of Pseudomonas fluorescens.
    Buswell JA; Mahmood A
    Biochem J; 1972 Apr; 127(2):45P. PubMed ID: 4403954
    [No Abstract]   [Full Text] [Related]  

  • 34. Phenazine biosynthesis by a pseudomonad.
    Byng GS; Turner JM
    Biochem Soc Trans; 1975; 3(5):742-4. PubMed ID: 1193284
    [No Abstract]   [Full Text] [Related]  

  • 35. Utilization of single L-amino acids as sole source of carbon and nitrogen by bacteria.
    Halvorson H
    Can J Microbiol; 1972 Nov; 18(11):1647-50. PubMed ID: 4628671
    [No Abstract]   [Full Text] [Related]  

  • 36. STUDY OF THE BIOSYNTHESIS OF PHENAZINE-1-CARBOXYLIC ACID.
    LEVITCH ME; STADTMAN ER
    Arch Biochem Biophys; 1964 Jul; 106():194-9. PubMed ID: 14218203
    [No Abstract]   [Full Text] [Related]  

  • 37. Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici.
    Thomashow LS; Weller DM
    J Bacteriol; 1988 Aug; 170(8):3499-508. PubMed ID: 2841289
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcriptome alteration in Phytophthora infestans in response to phenazine-1-carboxylic acid production by Pseudomonas fluorescens strain LBUM223.
    Roquigny R; Novinscak A; Arseneault T; Joly DL; Filion M
    BMC Genomics; 2018 Jun; 19(1):474. PubMed ID: 29914352
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [A genetic locus controlling biosynthesis of phenazine antibiotic in Pseudomonas fluorescens strain 2-79].
    Mavrodi DV; Chatuev BM; Ksenzenko VN; Tomashov LS; Boronin AM
    Dokl Akad Nauk; 1997 Jan; 352(1):117-20. PubMed ID: 9102094
    [No Abstract]   [Full Text] [Related]  

  • 40. Pseudomonic acid: an antibiotic produced by Pseudomonas fluorescens.
    Fuller AT; Mellows G; Woolford M; Banks GT; Barrow KD; Chain EB
    Nature; 1971 Dec; 234(5329):416-7. PubMed ID: 5003547
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.