BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 421130)

  • 1. The lipid and protein content of cholinergic synaptic vesicles from the electric organ of Torpedo marmorata purified to constant composition: implications for vesicle structure.
    Ohsawa K; Dowe GH; Morris SJ; Whittaker VP
    Brain Res; 1979 Feb; 161(3):447-57. PubMed ID: 421130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical composition of cholinergic synaptic vesicles from Torpedo marmorata based on improved purification.
    Tashiro T; Stadler H
    Eur J Biochem; 1978 Oct; 90(3):479-87. PubMed ID: 710443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adenosine triphosphate. A constituent of cholinergic synaptic vesicles.
    Dowdall MJ; Boyne AF; Whittaker VP
    Biochem J; 1974 Apr; 140(1):1-12. PubMed ID: 4451548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on homosynaptic (posttetanic) potentiation: a cholinergic modulator of presynaptic origin.
    Torda C
    Physiol Chem Phys; 1978; 10(5):473-81. PubMed ID: 751083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a membrane protein from cholinergic synaptic vesicles isolated from the electric organ of Torpedo marmorata.
    Bock E; Heilbronn E; Widlund L
    Biochim Biophys Acta; 1979 Nov; 581(1):71-8. PubMed ID: 508796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adenosine triphosphate in cholinergic vesicles isolated from the electric organ of Electrophorus electricus.
    Zimmermann H; Denston CR
    Brain Res; 1976 Jul; 111(2):365-76. PubMed ID: 949609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A structural model of cholinergic synaptic vesicles from the electric organ of Torpedo marmorata deduced from density measurements at different osmotic pressures.
    Breer H; Morris SJ; Whittaker VP
    Eur J Biochem; 1978 Jul; 87(3):453-8. PubMed ID: 679947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ganglioside composition of synaptic vesicles from Torpedo electric organ.
    Ledeen RW; Parsons SM; Diebler MF; Sbaschnig-Agler M; Lazereg S
    J Neurochem; 1988 Nov; 51(5):1465-9. PubMed ID: 3171589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biophysical and biochemical studies of isolated cholinergic vesicles from Torpedo marmorata.
    Whittaker VP
    Fed Proc; 1982 Sep; 41(11):2759-64. PubMed ID: 7117551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Stoichiometry of cholinergic synaptic vesicles].
    Ohsawa K
    Nihon Rinsho; 1979; 37(7):2840-52. PubMed ID: 393865
    [No Abstract]   [Full Text] [Related]  

  • 11. Acetylcholine incorporation by cholinergic synaptic vesicles from Torpedo marmorata.
    Diebler MF; Morot-Gaudry Y
    J Neurochem; 1981 Aug; 37(2):467-75. PubMed ID: 7264670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a heparan sulphate-containing proteoglycan as a specific core component of cholinergic synaptic vesicles from Torpedo marmorata.
    Stadler H; Dowe GH
    EMBO J; 1982; 1(11):1381-4. PubMed ID: 6233139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The electromotor system of Torpedo. A model cholinergic system.
    Whittaker VP
    Naturwissenschaften; 1977 Dec; 64(12):606-11. PubMed ID: 593415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of actin in highly purified synaptic vesicles from the electric organ of Torpedo marmorata.
    Zechel K; Stadler H
    J Neurochem; 1982 Sep; 39(3):788-95. PubMed ID: 7097285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of synaptosomal plasma membranes from cholinergic nerve terminals and a comparison of their proteins with those of synaptic vesicles.
    Stadler H; Tashiro T
    Eur J Biochem; 1979 Nov; 101(1):171-8. PubMed ID: 510302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in the osmotic fragility of recycling and reserve synaptic vesicles from the cholinergic electromotor nerve terminals of Torpedo and their possible significance for vesicle recycling.
    Giompres PE; Whittaker VP
    Biochim Biophys Acta; 1984 Mar; 770(2):166-70. PubMed ID: 6696906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The preparation and characterization of synaptic vesicles of high purity.
    Nagy A; Baker RR; Morris SJ; Whittaker VP
    Brain Res; 1976 Jun; 109(2):285-309. PubMed ID: 132227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 31P-NMR analysis of synaptic vesicles. Status of ATP and internal pH.
    Füldner HH; Stadler H
    Eur J Biochem; 1982 Jan; 121(3):519-24. PubMed ID: 7056254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetylcholine, ATP, and proteoglycan are common to synaptic vesicles isolated from the electric organs of electric eel and electric catfish as well as from rat diaphragm.
    Volknandt W; Zimmermann H
    J Neurochem; 1986 Nov; 47(5):1449-62. PubMed ID: 3760871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vesamicol blocks the recovery, by recycling cholinergic electromotor synaptic vesicles, of the biophysical characteristics of the reserve population.
    Rícný J; Whittaker VP
    Biochim Biophys Acta; 1993 Jun; 1148(2):234-8. PubMed ID: 8504117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.