These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
66 related articles for article (PubMed ID: 4211787)
1. Altered metabolism in a Streptococcus lactis C2 mutant deficient in lactic dehydrogenase. McKay LL; Baldwin KA J Dairy Sci; 1974 Feb; 57(2):181-6. PubMed ID: 4211787 [No Abstract] [Full Text] [Related]
2. The level of pyruvate-formate lyase controls the shift from homolactic to mixed-acid product formation in Lactococcus lactis. Melchiorsen CR; Jokumsen KV; Villadsen J; Israelsen H; Arnau J Appl Microbiol Biotechnol; 2002 Mar; 58(3):338-44. PubMed ID: 11935185 [TBL] [Abstract][Full Text] [Related]
3. Acetate utilization in Lactococcus lactis deficient in lactate dehydrogenase: a rescue pathway for maintaining redox balance. Hols P; Ramos A; Hugenholtz J; Delcour J; de Vos WM; Santos H; Kleerebezem M J Bacteriol; 1999 Sep; 181(17):5521-6. PubMed ID: 10464231 [TBL] [Abstract][Full Text] [Related]
4. Engineering Lactococcus lactis for D-Lactic Acid Production from Starch. Aso Y; Hashimoto A; Ohara H Curr Microbiol; 2019 Oct; 76(10):1186-1192. PubMed ID: 31302724 [TBL] [Abstract][Full Text] [Related]
5. Metabolism of lactose and citrate by mutants of Lactococcus lactis producing excess carbon dioxide. El Attar A; Monnet C; Corrieu G J Dairy Res; 2000 Nov; 67(4):571-83. PubMed ID: 11131070 [TBL] [Abstract][Full Text] [Related]
6. Method for the selection of Lactococcus lactis mutants producing excess carbon dioxide. El Attar A; Monnet C; Aymes F; Corrieu G J Dairy Res; 2000 Nov; 67(4):641-6. PubMed ID: 11131078 [No Abstract] [Full Text] [Related]
7. Lactate dehydrogenase has no control on lactate production but has a strong negative control on formate production in Lactococcus lactis. Andersen HW; Pedersen MB; Hammer K; Jensen PR Eur J Biochem; 2001 Dec; 268(24):6379-89. PubMed ID: 11737192 [TBL] [Abstract][Full Text] [Related]
8. Catabolism of mannitol in Lactococcus lactis MG1363 and a mutant defective in lactate dehydrogenase. Neves AR; Ramos A; Shearman C; Gasson MJ; Santos H Microbiology (Reading); 2002 Nov; 148(Pt 11):3467-3476. PubMed ID: 12427938 [TBL] [Abstract][Full Text] [Related]
9. Metabolic behavior of Lactococcus lactis MG1363 in microaerobic continuous cultivation at a low dilution rate. Jensen NB; Melchiorsen CR; Jokumsen KV; Villadsen J Appl Environ Microbiol; 2001 Jun; 67(6):2677-82. PubMed ID: 11375180 [TBL] [Abstract][Full Text] [Related]
10. Analysis of hemin effect on lactate reduction in Lactococcus lactis. Nagayasu M; Wardani AK; Nagahisa K; Shimizu H; Shioya S J Biosci Bioeng; 2007 Jun; 103(6):529-34. PubMed ID: 17630124 [TBL] [Abstract][Full Text] [Related]
11. Regulation of pyruvate metabolism in Lactococcus lactis depends on the imbalance between catabolism and anabolism. Garrigues C; Mercade M; Cocaign-Bousquet M; Lindley ND; Loubiere P Biotechnol Bioeng; 2001 Jul; 74(2):108-15. PubMed ID: 11369999 [TBL] [Abstract][Full Text] [Related]
12. Glucose metabolism and regulation of glycolysis in Lactococcus lactis strains with decreased lactate dehydrogenase activity. Garrigues C; Goupil-Feuillerat N; Cocaign-Bousquet M; Renault P; Lindley ND; Loubiere P Metab Eng; 2001 Jul; 3(3):211-7. PubMed ID: 11461143 [TBL] [Abstract][Full Text] [Related]
13. Two different pathways for D-xylose metabolism and the effect of xylose concentration on the yield coefficient of L-lactate in mixed-acid fermentation by the lactic acid bacterium Lactococcus lactis IO-1. Tanaka K; Komiyama A; Sonomoto K; Ishizaki A; Hall SJ; Stanbury PF Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):160-7. PubMed ID: 12382058 [TBL] [Abstract][Full Text] [Related]
14. Improvement in lactic acid production from starch using alpha-amylase-secreting Lactococcus lactis cells adapted to maltose or starch. Okano K; Kimura S; Narita J; Fukuda H; Kondo A Appl Microbiol Biotechnol; 2007 Jul; 75(5):1007-13. PubMed ID: 17384945 [TBL] [Abstract][Full Text] [Related]
15. Co-fermentation of glucose and citrate by Lactococcus lactis diacetylactis: quantification of the relative metabolic rates by isotopic analysis at natural abundance. Goupry S; Gentil E; Akoka S; Robins RJ Appl Microbiol Biotechnol; 2003 Oct; 62(5-6):489-97. PubMed ID: 12750852 [TBL] [Abstract][Full Text] [Related]
16. Simultaneous loss of proteinase- and lactose-utilizing enzyme activities in Streptococcus lactis and reversal of loss by transduction. McKay LL; Baldwin KA Appl Microbiol; 1974 Sep; 28(3):342-6. PubMed ID: 4214075 [TBL] [Abstract][Full Text] [Related]
17. Use of waste materials for Lactococcus lactis development. Rodríguez N; Torrado A; Cortés S; Domínguez JM J Sci Food Agric; 2010 Aug; 90(10):1726-34. PubMed ID: 20564439 [TBL] [Abstract][Full Text] [Related]
18. Increasing the heme-dependent respiratory efficiency of Lactococcus lactis by inhibition of lactate dehydrogenase. Arioli S; Zambelli D; Guglielmetti S; De Noni I; Pedersen MB; Pedersen PD; Dal Bello F; Mora D Appl Environ Microbiol; 2013 Jan; 79(1):376-80. PubMed ID: 23064338 [TBL] [Abstract][Full Text] [Related]
19. Increased biomass yield of Lactococcus lactis during energetically limited growth and respiratory conditions. Koebmann B; Blank LM; Solem C; Petranovic D; Nielsen LK; Jensen PR Biotechnol Appl Biochem; 2008 May; 50(Pt 1):25-33. PubMed ID: 17824842 [TBL] [Abstract][Full Text] [Related]
20. Species differences and effect of incubation time on lactic streptococcal intracellular proteolytic enzyme activity. Schmidt RH; Morris HA; McKay LL J Dairy Sci; 1977 Nov; 60(11):1677-82. PubMed ID: 411810 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]