These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 4211880)

  • 1. Comparative biochemistry of p-hydroxymethyl-L-phenylalanine: in vivo studies.
    Godin C; Sloane NH
    FEBS Lett; 1974 Jul; 43(2):159-62. PubMed ID: 4211880
    [No Abstract]   [Full Text] [Related]  

  • 2. Microbial synthesis of folate polyglutamates from labelled precursors.
    Brown JP; Dobbs F; Davidson GE; Scott JM
    J Gen Microbiol; 1974 Sep; 84(1):163-72. PubMed ID: 4215862
    [No Abstract]   [Full Text] [Related]  

  • 3. Conversion of pteroylmonoglutamates into pteroylpolyglutamates.
    Scott JM; Reed B
    Methods Enzymol; 1980; 66():638-41. PubMed ID: 6768964
    [No Abstract]   [Full Text] [Related]  

  • 4. The effect of the exogenous folate concentration on the biosynthesis of pteroylpolyglutamates in Lactobacillus casei and the folate polyglutamate distribution in Escherichia coli.
    Bassett R; Weir D; Scott J
    Biochem Soc Trans; 1976; 4(3):500-2. PubMed ID: 826429
    [No Abstract]   [Full Text] [Related]  

  • 5. Utilization of phenylalanine, phenyllactic acid, and phenylpyruvic acid by Lactobacillus casei.
    EIDUSON S; DUNN MS
    J Biol Chem; 1956 Mar; 219(1):175-80. PubMed ID: 13295269
    [No Abstract]   [Full Text] [Related]  

  • 6. Metabolism of ribosomes during thiamine starvation and restoration in Lactobacillus viridescens.
    Loh W; Farnbacher M; Bohne L; Emmerich B; Kersten H
    Biochim Biophys Acta; 1974 Jun; 353(2):238-47. PubMed ID: 4842019
    [No Abstract]   [Full Text] [Related]  

  • 7. Folate coenzymes of Lactobacillus casei and Streptococcus faecalis.
    Buehring KU; Tamura T; Stokstad EL
    J Biol Chem; 1974 Feb; 249(4):1081-9. PubMed ID: 4205313
    [No Abstract]   [Full Text] [Related]  

  • 8. Purification on hydroxyapatite of liver ribosomes and polysomes from unfasted mice.
    Hoffman WL; Ilan J
    Biochim Biophys Acta; 1974 Oct; 366(2):199-214. PubMed ID: 4616724
    [No Abstract]   [Full Text] [Related]  

  • 9. Transport and utilization of methyltetrahydrofolates by Lactobacillus casei.
    Shane B; Stokstad EL
    J Biol Chem; 1976 Jun; 251(11):3405-10. PubMed ID: 819430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of tyrosine through phenylalanine hydroxylation bypasses the intrinsic feedback inhibition in Escherichia coli.
    Huang J; Lin Y; Yuan Q; Yan Y
    J Ind Microbiol Biotechnol; 2015 Apr; 42(4):655-9. PubMed ID: 25645094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydroxymethylation of the benzene ring. IV. p-Hydroxymethyl-L-phenylalanine, a naturally occuring amino acid in Escherichia coli: identification and biochemical properties.
    Sloane NH; Smith SC
    Biochim Biophys Acta; 1968 Jun; 158(3):394-401. PubMed ID: 4873179
    [No Abstract]   [Full Text] [Related]  

  • 12. Studies on the formation of 3,4-dihydroxyphenylalanine, m-tyrosine and o-tyrosine from L-phenylalanine by rat liver and adrenal.
    Ishimitsu S; Fujimoto S; Ohara A
    Chem Pharm Bull (Tokyo); 1988 Jan; 36(1):279-85. PubMed ID: 3132334
    [No Abstract]   [Full Text] [Related]  

  • 13. Metabolism of pyruvate and citrate in lactobacilli.
    Hickey MW; Hillier AJ; Jago GR
    Aust J Biol Sci; 1983; 36(5-6):487-96. PubMed ID: 6426447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The metabolism of methotrexate in Lactobacillus casei and rat liver and the influence of methotrexate on metabolism of folic acid.
    Shin YS; Buehring KU; Stokstad EL
    J Biol Chem; 1974 Sep; 249(18):5772-7. PubMed ID: 4213458
    [No Abstract]   [Full Text] [Related]  

  • 15. Mechanism of metal-independent hydroxylation by Chromobacterium violaceum phenylalanine hydroxylase.
    Carr RT; Balasubramanian S; Hawkins PC; Benkovic SJ
    Biochemistry; 1995 Jun; 34(22):7525-32. PubMed ID: 7779797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of cultured milk products by Lactobacillus and Bifidobacterium species on the secretion of bile acids in hepatocytes and in rats.
    Imaizumi K; Hirata K; Zommara M; Sugano M; Suzuki Y
    J Nutr Sci Vitaminol (Tokyo); 1992 Aug; 38(4):343-51. PubMed ID: 1291639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of L-1-tosylamido-2-phenylethyl chloromethyl ketone on the activity of procaryote and eucaryote tRNA binding factors.
    Highland JH; Smith RL; Burka E; Gordon J
    FEBS Lett; 1974 Feb; 39(1):96-8. PubMed ID: 4605249
    [No Abstract]   [Full Text] [Related]  

  • 18. Increased conversion of a phenylalanine load to tyrosine in tetraiodoglucagon-treated rats.
    Fuller RW; Baker JC
    Biochem Biophys Res Commun; 1974 Jun; 58(4):945-50. PubMed ID: 4834684
    [No Abstract]   [Full Text] [Related]  

  • 19. DL-[2-14C]p-chlorophenylalanine as an inhibitor of tryptophan 5-hydroxylase.
    Gál EM; Roggeveen AE; Millard SA
    J Neurochem; 1970 Aug; 17(8):1221-35. PubMed ID: 5311687
    [No Abstract]   [Full Text] [Related]  

  • 20. [Bacteriocinogeny in lactobacilli of the subgenus Streptobacterium].
    Filippov VA
    Antibiotiki; 1975 Sep; (9):798-800. PubMed ID: 810075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.