These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83. Some biochemical properties of melanins from opioid peptides. Rosei MA; Mosca L; Coccia R; Blarzino C; Musci G; De Marco C Biochim Biophys Acta; 1994 Mar; 1199(2):123-9. PubMed ID: 7907228 [TBL] [Abstract][Full Text] [Related]
84. Peroxidase-dependent oxidation of tyrosine or dopa to melanin in neurons. Okun MR; Donnellan B; Lever WF; Edelstein LM; Or N Histochemie; 1971; 25(4):289-96. PubMed ID: 5574136 [No Abstract] [Full Text] [Related]
85. Liposome-entrapped tyrosinase: a tool to investigate the regulation of the Raper-Mason pathway. Miranda M; Amicarelli F; Poma A; Ragnelli AM; Arcadi A Biochim Biophys Acta; 1988 Sep; 966(3):276-86. PubMed ID: 3137975 [TBL] [Abstract][Full Text] [Related]
86. Inhibition of mushroom tyrosinase by 3-amino-L-tyrosine: molecular probing of the active site of the enzyme. Maddaluno JF; Faull KF Experientia; 1988 Oct; 44(10):885-7. PubMed ID: 3141207 [TBL] [Abstract][Full Text] [Related]
87. Selective uptake of 2-thiouracil into melanin-producing systems depends on chemical binding to enzymically generated dopaquinone. Palumbo A; d'Ischia M; Misuraca G; Iannone A; Prota G Biochim Biophys Acta; 1990 Dec; 1036(3):221-7. PubMed ID: 2124140 [TBL] [Abstract][Full Text] [Related]
88. Oxidation of proteins by tyrosinase and peroxidase. SIZER IW Adv Enzymol Relat Subj Biochem; 1953; 14():129-61. PubMed ID: 13057715 [No Abstract] [Full Text] [Related]
89. Regulation of melanin production by Cryptococcus neoformans. Nurudeen TA; Ahearn DG J Clin Microbiol; 1979 Nov; 10(5):724-9. PubMed ID: 44517 [TBL] [Abstract][Full Text] [Related]
90. The chemistry of melanin; mechanism of the oxidation of dihydroxyphenylalanine by tyrosinase. MASON HS J Biol Chem; 1948 Jan; 172(1):83-99. PubMed ID: 18920770 [No Abstract] [Full Text] [Related]
91. Cytochemical localization of tyrosinase activity in pigmented epithelial cells of Rana pipiens and Xenopus laevis larvae. Eppig JJ; Dumont JN J Ultrastruct Res; 1972 May; 39(3):397-410. PubMed ID: 4623762 [No Abstract] [Full Text] [Related]
92. Stimulation of DOPA14C incorporation into melanoma tissue by chlorpromazine and reserpine. Saunders RN; Miya TS; Bousquet WF Toxicol Appl Pharmacol; 1970 Mar; 16(2):434-41. PubMed ID: 4985146 [No Abstract] [Full Text] [Related]
93. Biochemical basis for depigmentation of skin by phenolic germicides. McGuire J; Hendee J J Invest Dermatol; 1971 Oct; 57(4):256-61. PubMed ID: 5000660 [No Abstract] [Full Text] [Related]
94. Ultrastructural and chemical distinction of melanins formed by Verticillium dahliae from (+)-scytalone, 1,8-dihydroxynaphthalene, catechol, and L-3,4-dihydroxyphenylalanine. Wheeler MH; Tolmsoff WJ; Bell AA; Mollenhauer HH Can J Microbiol; 1978 Mar; 24(3):289-97. PubMed ID: 565670 [TBL] [Abstract][Full Text] [Related]
96. The conversion of tyrosine to catecholamines and the biogenesis of N-acetyl-dopamine in isolated epidermis of the fiddler crab, Uca pugilator. Summers NM Comp Biochem Physiol; 1968 Jul; 26(1):259-69. PubMed ID: 4991093 [No Abstract] [Full Text] [Related]
97. Tyrosinase activity in subcellular fractions of black and albino mice. Hearing VJ Nat New Biol; 1973 Sep; 245(142):81-3. PubMed ID: 4199613 [No Abstract] [Full Text] [Related]
98. Human gamma globulin: substrate for polyphenol oxidase. Gemant A Mol Biol Rep; 1975 Mar; 2(1):81-5. PubMed ID: 48187 [No Abstract] [Full Text] [Related]
99. Polyphenol oxidase produced during encystation of Acanthamoeba castellanii. Sykes DE; Band RN J Protozool; 1985 Aug; 32(3):512-7. PubMed ID: 3930706 [TBL] [Abstract][Full Text] [Related]
100. The oxidation of catechol by tyrosinase. WRIGHT CI; MASON HS J Biol Chem; 1946 Sep; 165(1):45-53. PubMed ID: 21001183 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]