These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 4213777)

  • 1. Ozone and glycol vapor decontamination of air in a closed room.
    Pelleu GB; Berry RF; Holleman NG
    J Dent Res; 1974; 53(5):1132-7. PubMed ID: 4213777
    [No Abstract]   [Full Text] [Related]  

  • 2. The use of ozone gas for the inactivation of Bacillus anthracis and Bacillus subtilis spores on building materials.
    Wood JP; Wendling M; Richter W; Rogers J
    PLoS One; 2020; 15(5):e0233291. PubMed ID: 32437373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicity of open air to a variety of microorganisms.
    May KR; Druett HA; Packman LP
    Nature; 1969 Mar; 221(5186):1146-7. PubMed ID: 4975276
    [No Abstract]   [Full Text] [Related]  

  • 4. Mechanisms of Bacillus subtilis spore resistance to and killing by aqueous ozone.
    Young SB; Setlow P
    J Appl Microbiol; 2004; 96(5):1133-42. PubMed ID: 15078531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Aerosol disinfection of bacterial spores].
    Theilen U; Wilsberg FJ; Böhm R; Strauch D
    Zentralbl Bakteriol Mikrobiol Hyg B Umwelthyg Krankenhaushyg Arbeitshyg Prav Med; 1987 Jun; 184(3-4):229-52. PubMed ID: 3116785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The germicidal properties of ozone-olefin mixtures.
    Druett HA; Packman LP
    J Appl Bacteriol; 1972 Jun; 35(2):323-9. PubMed ID: 4558956
    [No Abstract]   [Full Text] [Related]  

  • 7. [Ozone for disinfection of water contaminated with vegetative and spore forms of bacteria, fungi, and viruses].
    Häufele A; von Sprockhoff H
    Zentralbl Bakteriol Orig B; 1973 Apr; 157(1):53-70. PubMed ID: 4200343
    [No Abstract]   [Full Text] [Related]  

  • 8. Comparison of Fe(VI) (FeO4(2-)) and ozone in inactivating Bacillus subtilis spores.
    Makky EA; Park GS; Choi IW; Cho SI; Kim H
    Chemosphere; 2011 May; 83(9):1228-33. PubMed ID: 21489600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The disinfecting activity of methyl bromide on various microbes and infected materials under controlled conditions.
    Harry EG; Brown WB; Goodship G
    J Appl Bacteriol; 1972 Sep; 35(3):485-91. PubMed ID: 4263775
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of polyethylene glycol 300 on the viability of bacterial spores.
    Robison RL; Weinswig MH
    J Pharm Sci; 1969 Feb; 58(2):275-6. PubMed ID: 4976277
    [No Abstract]   [Full Text] [Related]  

  • 11. Survival of micro-organisms in aerosols produced in cleaning and disinfecting.
    Braymen DT
    Public Health Rep (1896); 1969 Jun; 84(6):547-52. PubMed ID: 4977536
    [No Abstract]   [Full Text] [Related]  

  • 12. Disinfection with gaseous formaldehyde. Third Part: Bactericidal and sporicidal effectiveness of gaseous formaldehyde and level of residues in dependence on concentration, temperature and relative humidity.
    Casella ML; Schmidt-Lorenz W
    Zentralbl Hyg Umweltmed; 1989 Sep; 188(6):533-49. PubMed ID: 2508656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The effect of an ozone-oxygen mixture on Mycobacterium tuberculosis and conditionally pathogenic microorganisms].
    Priĭmak AA; Kaliuk AN; Kirgintsev AG
    Probl Tuberk; 1991; (4):7-10. PubMed ID: 1906618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Antimicrobial effect of thiomersal in vaccines].
    Patzwaldt HG; Winkler D; Oberdoerster F
    Pharmazie; 1972 Sep; 27(9):603-5. PubMed ID: 4563895
    [No Abstract]   [Full Text] [Related]  

  • 15. Application of a novel decontamination process using gaseous ozone.
    Moat J; Cargill J; Shone J; Upton M
    Can J Microbiol; 2009 Aug; 55(8):928-33. PubMed ID: 19898532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effectiveness of a novel ozone-based system for the rapid high-level disinfection of health care spaces and surfaces.
    Zoutman D; Shannon M; Mandel A
    Am J Infect Control; 2011 Dec; 39(10):873-9. PubMed ID: 21546123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological safety cabinets, decontamination or sterilization with paraformaldehyde.
    Fink R; Liberman DF; Murphy K; Lupo D; Israeli E
    Am Ind Hyg Assoc J; 1988 Jun; 49(6):277-9. PubMed ID: 3135736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Experimental disinfection of room air containing influenza viruses with euphagol and triethylene glycol].
    Bingel KF; Hügel M; Grosser R
    Arch Hyg Bakteriol; 1966 Apr; 150(1):107-25. PubMed ID: 5996403
    [No Abstract]   [Full Text] [Related]  

  • 19. Effects of modification of membrane lipid composition on Bacillus subtilis sporulation and spore properties.
    Griffiths KK; Setlow P
    J Appl Microbiol; 2009 Jun; 106(6):2064-78. PubMed ID: 19291241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relevance of diffusion through bacterial spore coats/membranes and the associated concentration boundary layers in the initial lag phase of inactivation: a case study for Bacillus subtilis with ozone and monochloramine.
    Fernando WJ; Othman R
    Math Biosci; 2006 Feb; 199(2):175-87. PubMed ID: 16387333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.