BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 4214075)

  • 21. Conjugal transfer of genetic information in group N streptococci.
    McKay LL; Baldwin KA; Walsh PM
    Appl Environ Microbiol; 1980 Jul; 40(1):84-9. PubMed ID: 6773476
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A lactose fermentation product produced by Lactococcus lactis subsp. lactis, acetate, inhibits the motility of flagellated pathogenic bacteria.
    Nakamura S; Morimoto YV; Kudo S
    Microbiology (Reading); 2015 Apr; 161(Pt 4):701-7. PubMed ID: 25573770
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolism of lactose and citrate by mutants of Lactococcus lactis producing excess carbon dioxide.
    El Attar A; Monnet C; Corrieu G
    J Dairy Res; 2000 Nov; 67(4):571-83. PubMed ID: 11131070
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of a cloned chromosomal fragment affecting the proteinase activity of Streptococcus lactis ssp. lactis.
    Tynkkynen S; von Wright A
    Biochimie; 1988 Apr; 70(4):531-4. PubMed ID: 3139072
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of the lactose plasmid on the metabolism of galactose by Streptococcus lactis.
    LeBlanc DJ; Crow VL; Lee LN; Garon CF
    J Bacteriol; 1979 Feb; 137(2):878-84. PubMed ID: 106044
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A specific mutation in the promoter region of the silent cel cluster accounts for the appearance of lactose-utilizing Lactococcus lactis MG1363.
    Solopova A; Bachmann H; Teusink B; Kok J; Neves AR; Kuipers OP
    Appl Environ Microbiol; 2012 Aug; 78(16):5612-21. PubMed ID: 22660716
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasmid distribution and evidence for a proteinase plasmid in Streptococcus lactis C2-1.
    McKay LL; Baldwin KA
    Appl Microbiol; 1975 Apr; 29(4):546-8. PubMed ID: 804856
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accumulation of casein-derived peptides during growth of proteinase-positive strains of Lactococcus lactis in milk: their contribution to subsequent bacterial growth is impaired by their internal transport.
    Foucaud C; Juillard V
    J Dairy Res; 2000 May; 67(2):233-40. PubMed ID: 10840677
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of the genetic element coding for lactose metabolism in Lactococcus lactis subsp. lactis KP3.
    Steele JL; Polzin KM; McKay LL
    Plasmid; 1989 Jul; 22(1):44-51. PubMed ID: 2506593
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasmid linkage of the D-tagatose 6-phosphate pathway in Streptococcus lactis: effect on lactose and galactose metabolism.
    Crow VL; Davey GP; Pearce LE; Thomas TD
    J Bacteriol; 1983 Jan; 153(1):76-83. PubMed ID: 6294064
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oligopeptides are the main source of nitrogen for Lactococcus lactis during growth in milk.
    Juillard V; Le Bars D; Kunji ER; Konings WN; Gripon JC; Richard J
    Appl Environ Microbiol; 1995 Aug; 61(8):3024-30. PubMed ID: 7487034
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isolation and characterization of plasmid DNA in Streptococcus cremoris.
    Larsen LD; McKay LL
    Appl Environ Microbiol; 1978 Dec; 36(6):944-52. PubMed ID: 736546
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasmid linkage of a bacteriocin-like substance in Streptococcus lactis subsp. diacetylactis strain WM4: transferability to Streptococcus lactis.
    Scherwitz KM; Baldwin KA; McKay LL
    Appl Environ Microbiol; 1983 May; 45(5):1506-12. PubMed ID: 6408984
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lactose hydrolysing enzymes in Streptococcus lactis and Streptococcus cremoris and also in some other species of streptococci.
    Farrow JA
    J Appl Bacteriol; 1980 Dec; 49(3):493-503. PubMed ID: 6783605
    [No Abstract]   [Full Text] [Related]  

  • 35. Conjugal transfer from Streptococcus lactis ME2 of plasmids encoding phage resistance, nisin resistance and lactose-fermenting ability: evidence for a high-frequency conjugative plasmid responsible for abortive infection of virulent bacteriophage.
    Klaenhammer TR; Sanozky RB
    J Gen Microbiol; 1985 Jun; 131(6):1531-41. PubMed ID: 3930657
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Catabolite inhibition and sequential metabolism of sugars by Streptococcus lactis.
    Thompson J; Turner KW; Thomas TD
    J Bacteriol; 1978 Mar; 133(3):1163-74. PubMed ID: 417061
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Short communication: Enzymatic perspective of galactosidases reveals variations in lactose metabolism among Lactococcus lactis strains.
    Yang Y; Li N; Jiang Y; Liu Z; Liu X; Zhao J; Zhang H; Chen W
    J Dairy Sci; 2019 Jul; 102(7):6027-6031. PubMed ID: 31056324
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The extent of co-metabolism of glucose and galactose by Lactococcus lactis changes with the expression of the lacSZ operon from Streptococcus thermophilus.
    Solem C; Koebmann B; Jensen PR
    Biotechnol Appl Biochem; 2008 May; 50(Pt 1):35-40. PubMed ID: 17822381
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermosensitive plasmid replication, temperature-sensitive host growth, and chromosomal plasmid integration conferred by Lactococcus lactis subsp. cremoris lactose plasmids in Lactococcus lactis subsp. lactis.
    Feirtag JM; Petzel JP; Pasalodos E; Baldwin KA; McKay LL
    Appl Environ Microbiol; 1991 Feb; 57(2):539-48. PubMed ID: 1901709
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Restriction and modification activities from Streptococcus lactis ME2 are encoded by a self-transmissible plasmid, pTN20, that forms cointegrates during mobilization of lactose-fermenting ability.
    Higgins DL; Sanozky-Dawes RB; Klaenhammer TR
    J Bacteriol; 1988 Aug; 170(8):3435-42. PubMed ID: 2841286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.