These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 4214229)

  • 21. Enhanced citric acid biosynthesis in Pseudomonas fluorescens ATCC 13525 by overexpression of the Escherichia coli citrate synthase gene.
    Buch AD; Archana G; Kumar GN
    Microbiology (Reading); 2009 Aug; 155(Pt 8):2620-2629. PubMed ID: 19443543
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbohydrate oxidation by Pseudomonas fluorescens. I. The mechanism of glucose and gluconate oxidation.
    WOOD WA; SCHWERDT RF
    J Biol Chem; 1953 Apr; 201(2):501-11. PubMed ID: 13061385
    [No Abstract]   [Full Text] [Related]  

  • 23. Proceedings: Aspects of regulation of the pathways for D-glucose 6-phosphate, D-galactose, and L-arabinose in Pseudomonas fluorescens.
    Schimz KL; Lessmann D; Kurz G
    Hoppe Seylers Z Physiol Chem; 1974 Oct; 355(10):1249. PubMed ID: 4218835
    [No Abstract]   [Full Text] [Related]  

  • 24. Membrane enzymes associated with the dissimilation of some citric acid cycle substrates and production of extracellular oxidation products in chemostat cultures of Pseudomonas fluorescens.
    Lee WS; Cooper JK; Lynch WH
    Can J Microbiol; 1984 Mar; 30(3):396-405. PubMed ID: 6426768
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Naphthalene uptake by a Pseudomonas fluorescens isolate.
    Whitman BE; Lueking DR; Mihelcic JR
    Can J Microbiol; 1998 Nov; 44(11):1086-93. PubMed ID: 10030003
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oxidation of 3-deoxy-3-fluoro-D-glucose by cell-free extracts of Pseudomonas fluorescens.
    Taylor NF; White FH; Eisenthal R
    Biochem Pharmacol; 1972 Feb; 21(3):347-53. PubMed ID: 4622560
    [No Abstract]   [Full Text] [Related]  

  • 27. Kinetics of transport of glucose, fructose, and mannitol by Pseudomonas aeruginosa.
    Eagon RG; Phibbs PV
    Can J Biochem; 1971 Sep; 49(9):1031-41. PubMed ID: 5003580
    [No Abstract]   [Full Text] [Related]  

  • 28. Carbon and sulphur utilization during growth of Pseudomonas fluorescens on potassium D-glucose 6-O-sulphate as the sole sulphur source.
    Fitzgerald JW; Dodgson KS
    Biochem J; 1971 Apr; 122(3):277-83. PubMed ID: 5118101
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glucose and gluconate metabolism in an Escherichia coli mutant lacking phosphoglucose isomerase.
    Fraenkel DG; Levisohn SR
    J Bacteriol; 1967 May; 93(5):1571-8. PubMed ID: 5337843
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The uptake of 2-ketogluconate by Pseudomonas putida.
    Torrontegui D; Díaz R; Cánovas JL
    Arch Microbiol; 1976 Oct; 110(1):43-8. PubMed ID: 1015939
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CO2-fixing enzymes in Pseudomonas fluorescens.
    Higa AI; Milrad de Forchetti SR; Cazzulo JJ
    J Gen Microbiol; 1976 Mar; 93(1):69-74. PubMed ID: 816991
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic regulation of hexokinase activity in a heterogeneous branched bienzyme system.
    Mukherjee A; Mukherjea RN
    Biochim Biophys Acta; 1988 Apr; 954(1):126-36. PubMed ID: 3358935
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro characterization of a phosphate starvation-independent carbon-phosphorus bond cleavage activity in Pseudomonas fluorescens 23F.
    McMullan G; Quinn JP
    J Bacteriol; 1994 Jan; 176(2):320-4. PubMed ID: 8288524
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The relationship between methionine uptake and demethiolation in a methionine-utilizing mutant of Pseudomonas fluorescens UK1.
    Laakso S
    J Gen Microbiol; 1976 Aug; 96(2):391-4. PubMed ID: 822130
    [No Abstract]   [Full Text] [Related]  

  • 35. Effect of carbon source on pyrimidine formation in Pseudomonas fluorescens ATCC 13525.
    West TP
    Microbiol Res; 2005; 160(4):337-42. PubMed ID: 16255137
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Catabolism of D-fructose and D-ribose by Pseudomonas doudoroffii. I. Physiological studies and mutant analysis.
    Baumann P; Baumann L
    Arch Microbiol; 1975 Nov; 105(3):225-40. PubMed ID: 127561
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of multivalent cations in the uptake and oxidation of glucose by Pseudomonas fluorescens.
    Walker CA; Durham NN
    Biochem J; 1973 Oct; 136(2):429-31. PubMed ID: 4204323
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nitrous oxide as end product of denitrification by strains of fluorescent pseudomonads.
    Greenberg EP; Becker GE
    Can J Microbiol; 1977 Jul; 23(7):903-7. PubMed ID: 195699
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The EmhABC efflux pump decreases the efficiency of phenanthrene biodegradation by Pseudomonas fluorescens strain LP6a.
    Adebusuyi AA; Smith AY; Gray MR; Foght JM
    Appl Microbiol Biotechnol; 2012 Aug; 95(3):757-66. PubMed ID: 22361858
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gluconate oxidation by Pseudomonas fluorescens.
    KOEPSELL HJ
    J Biol Chem; 1950 Oct; 186(2):743-51. PubMed ID: 14794670
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.