These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 4215308)

  • 1. Coprophagy in laboratory animals: a preliminary study to assess potential influences of excreta ingestion on radionuclide retention patterns.
    Thomas RL; Roe LJ
    Am Ind Hyg Assoc J; 1974 Nov; 35(11):741-7. PubMed ID: 4215308
    [No Abstract]   [Full Text] [Related]  

  • 2. Metabolism and toxicity of inhaled 144 Ce in rats.
    Thomas RL; Scott JK; Chiffelle TL
    Radiat Res; 1972 Mar; 49(3):598-610. PubMed ID: 4622340
    [No Abstract]   [Full Text] [Related]  

  • 3. Availability in the dog of radionuclides in nuclear debris from the Plowshare Excavation Cabriolet.
    Chertok RJ; Lake S
    Health Phys; 1970 Sep; 19(3):405-9. PubMed ID: 4997941
    [No Abstract]   [Full Text] [Related]  

  • 4. Standardization of nitrogen-balance experiments with rats. II. Experimental procedure and techniques used in the evaluation of the experiments.
    Scheele CW; Jansen BP
    Z Tierphysiol Tierernahr Futtermittelkd; 1971 Aug; 28(1):24-8. PubMed ID: 5111212
    [No Abstract]   [Full Text] [Related]  

  • 5. Whole-body counting: analysis of retention data for isotopes having prominent fecal excretion.
    Heaney RP
    J Lab Clin Med; 1974 Jul; 84(1):1-5. PubMed ID: 4209379
    [No Abstract]   [Full Text] [Related]  

  • 6. Intestinal uptake and whole-body retention of 141 Ce by suckling rats.
    Inaba J; Lengemann FW
    Health Phys; 1972 Feb; 22(2):169-75. PubMed ID: 5014873
    [No Abstract]   [Full Text] [Related]  

  • 7. [An easily manufactured cage for the keeping of small rodents and for the prevention coprophagy].
    Linss W
    Z Med Labortech; 1971; 12(6):289-90. PubMed ID: 5170133
    [No Abstract]   [Full Text] [Related]  

  • 8. Availability in the peccary pig of radionuclides in nuclear debris from the Plowshare Excavation Buggy.
    Chertok RJ; Lake S
    Health Phys; 1971 Mar; 20(3):313-6. PubMed ID: 4996876
    [No Abstract]   [Full Text] [Related]  

  • 9. The extent of coprophagy in rats with differing iron status and its effect on iron absorption.
    Tidehag P; Hallmans G; Sjöström R; Sunzel B; Wetter L; Wing K
    Lab Anim; 1988 Oct; 22(4):313-9. PubMed ID: 3230866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coprophagy in young laboratory rat.
    Nováková V; Babický A
    Physiol Bohemoslov; 1989; 38(1):21-8. PubMed ID: 2524075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Appearance and reappearance of mutagens in urine from rats after oral administration of direct brown 95, due to coprophagy.
    Bos RP; Koopman JP; Theuws JL; Kennis HM; Henderson PT
    Toxicology; 1986 Apr; 39(1):85-92. PubMed ID: 3515634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Analyses of constituents of feces and the effect of a vitamin B12 fortified diet on coprophagy in the mouse].
    Ebino KY; Suwa T; Kuwabara Y; Saito TR; Takahashi KW
    Jikken Dobutsu; 1986 Oct; 35(4):381-6. PubMed ID: 3803425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation on the growth of coprophagy-prevented rats with supplemented vitamin B12.
    Sukemori S; Kurosawa A; Ikeda S; Kurihara Y
    J Anim Physiol Anim Nutr (Berl); 2006 Oct; 90(9-10):402-6. PubMed ID: 16958797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Model of a stand designed to prevent coprophagia in experimental animals and their dietary regime].
    Arakcheeva SG; Zubitskaia MA
    Med Parazitol (Mosk); 1972; 41(3):367-8. PubMed ID: 5066426
    [No Abstract]   [Full Text] [Related]  

  • 15. Daily rhythms of food intake and feces reingestion in the degu, an herbivorous Chilean rodent: optimizing digestion through coprophagy.
    Kenagy GJ; Veloso C; Bozinovic F
    Physiol Biochem Zool; 1999; 72(1):78-86. PubMed ID: 9882606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effectiveness of DTPA for the removal of in vivo 144 Ce accompanied with different levels of carrier.
    Takada K
    Health Phys; 1972 Oct; 23(4):481-9. PubMed ID: 4634928
    [No Abstract]   [Full Text] [Related]  

  • 17. Dietary influences in the preferences of pre-weanling Long-Evans rats for the anal excreta of adult males.
    Brown RE
    Physiol Behav; 1983 Jul; 31(1):73-8. PubMed ID: 6685320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A cage for the collection of excreta from individual mice in radioactive tracer studies.
    Porteous KM; Porteous DD
    Lab Anim Sci; 1975 Jun; 25(3):351-2. PubMed ID: 1142732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution and retention of 241Am in the baboon.
    Guilmette RA; Cohen N; Wrenn ME
    Radiat Res; 1980 Jan; 81(1):100-19. PubMed ID: 6766219
    [No Abstract]   [Full Text] [Related]  

  • 20. [On the mathematical modeling of uptake and excretion of radioactive isotopes].
    Grinev VS; Kalinina EV; Korolev GK; Moskalev IuI; Parfenov IuD
    Radiobiologiia; 1966; 6(1):122-7. PubMed ID: 6000674
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.