These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 4215451)

  • 1. Physiological differences between cyclopropane fatty acid-deficient mutants and the parent strain of Streptococcus faecalis.
    Jungkind DL; Wood RC
    Biochim Biophys Acta; 1974 Feb; 337(2):298-310. PubMed ID: 4215451
    [No Abstract]   [Full Text] [Related]  

  • 2. Factors involved in the synthesis of cyclopropane fatty acids by Streptococcus faecalis.
    Jungkind DL; Wood RC
    Biochim Biophys Acta; 1974 Feb; 337(2):286-97. PubMed ID: 4215450
    [No Abstract]   [Full Text] [Related]  

  • 3. Folate coenzymes in amethopterin-sensitive and -resistant strains of Streptococcus faecalis. Enzymatic formation and metabolic function.
    Albrecht AM; Pearce FK; Hutchison DJ
    J Biol Chem; 1966 Mar; 241(5):1036-42. PubMed ID: 4956661
    [No Abstract]   [Full Text] [Related]  

  • 4. Cyclopropane fatty acids improve Escherichia coli survival in acidified minimal media by reducing membrane permeability to H+ and enhanced ability to extrude H+.
    Shabala L; Ross T
    Res Microbiol; 2008; 159(6):458-61. PubMed ID: 18562182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis of folic acid. I. Influence of various heterocyclic metabolites on the biogenesis of folic acid in microorganisms.
    Mankodi BS; Rege DV
    Arch Mikrobiol; 1966 Feb; 53(1):33-40. PubMed ID: 4964510
    [No Abstract]   [Full Text] [Related]  

  • 6. Specificity of cyclopropane fatty acid synthesis in Escherichia coli. Utilization of isomers of monounsaturated fatty acids.
    Marinari LA; Goldfine H; Panos C
    Biochemistry; 1974 Apr; 13(9):1978-83. PubMed ID: 4599378
    [No Abstract]   [Full Text] [Related]  

  • 7. Acid habituation of Escherichia coli and the potential role of cyclopropane fatty acids in low pH tolerance.
    Brown JL; Ross T; McMeekin TA; Nichols PD
    Int J Food Microbiol; 1997 Jul; 37(2-3):163-73. PubMed ID: 9310851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FOLIC ACID METABOLISM IN ANTIFOLIC-RESISTANT MUTANTS OF STREPTOCOCCUS FAECALIS.
    JOHNSON AH; HUTCHISON DJ
    J Bacteriol; 1964 Apr; 87(4):786-91. PubMed ID: 14137614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of growth conditions on the formic: acetic acid ratio in Escherichia coli and Streptococcus faecalis.
    Drucker DB; Collard PJ; Bostock A; Chapman KB
    Microbios; 1974; 10A SUPPL(41):39-44. PubMed ID: 4218295
    [No Abstract]   [Full Text] [Related]  

  • 10. Inhibition of microorganisms by pyrimidine nucleosides.
    Mehta BM; Hutchison DJ
    Ann N Y Acad Sci; 1975 Aug; 255():559-63. PubMed ID: 811152
    [No Abstract]   [Full Text] [Related]  

  • 11. Relation of folic acid concentration of medium to riboflavin metabolism of Streptococcus faecalis.
    CLAPPER WE; MEADE GH
    J Bacteriol; 1958 Jul; 76(1):48-51. PubMed ID: 13563389
    [No Abstract]   [Full Text] [Related]  

  • 12. Increased membrane surface positive charge and altered membrane fluidity leads to cationic antimicrobial peptide resistance in Enterococcus faecalis.
    Kumariya R; Sood SK; Rajput YS; Saini N; Garsa AK
    Biochim Biophys Acta; 2015 Jun; 1848(6):1367-75. PubMed ID: 25782727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Photochemical inactivation of folic acid in the presence of riboflavin and its inhibition by ascorbic acid].
    Reusser P
    Int Z Vitaminforsch; 1970; 40(1):64-72. PubMed ID: 4985645
    [No Abstract]   [Full Text] [Related]  

  • 14. Cation transport and electrogenesis by Streptococcus faecalis. II. Proton and sodium extrusion.
    Harold FM; Papineau D
    J Membr Biol; 1972; 8(1):45-62. PubMed ID: 4263675
    [No Abstract]   [Full Text] [Related]  

  • 15. Characterization of a conditional mutant with altered envelope showing pH-dependent morphology and temperature-dependent division.
    Satta G; Fontana R
    J Gen Microbiol; 1974 Jan; 80(1):51-63. PubMed ID: 4595008
    [No Abstract]   [Full Text] [Related]  

  • 16. [Investigations on the fatty acid composition of lipids from Salmonella minnesota S and R forms (author's transl)].
    Ferber E; Schlecht S; Fromme I
    Zentralbl Bakteriol Orig A; 1976 Nov; 236(2-3):275-87. PubMed ID: 1015016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asparagine transport in Lactobacillus plantarum and Streptococcus faecalis.
    Holden JT; Bunch JM
    Biochim Biophys Acta; 1973 May; 307(3):640-55. PubMed ID: 4198088
    [No Abstract]   [Full Text] [Related]  

  • 18. Optimization of cyclopropane fatty acids production in Yarrowia lipolytica.
    Czerwiec Q; Idrissitaghki A; Imatoukene N; Nonus M; Thomasset B; Nicaud JM; Rossignol T
    Yeast; 2019 Mar; 36(3):143-151. PubMed ID: 30677185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Damage and recovery in streptococci.
    Payne J
    Soc Appl Bacteriol Symp Ser; 1978; 7():349-69. PubMed ID: 103202
    [No Abstract]   [Full Text] [Related]  

  • 20. Folate replacement by tetrahydrohomopteroate in triazine-resistant bacteria.
    Genther CS; Roszmann JH; Smith CC; Kisliuk RL
    J Bacteriol; 1971 Aug; 107(2):576-7. PubMed ID: 5000309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.