BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 4215748)

  • 1. Formation of salicylic acid from naphthalene by microorganisms: Part II. Factors affecting salicylic acid accumulation.
    Singh HD; Lonsane BK; Barua PK; Baruah JN; Iyengar MS
    Indian J Exp Biol; 1974 Mar; 12(2):162-5. PubMed ID: 4215748
    [No Abstract]   [Full Text] [Related]  

  • 2. Formation of salicylic acid from naphthalene by microorganisms: Part I. Studies on isolation, characterization & growth of bacterial isolates utilizing naphthalene.
    Lonsane BK; Barua PK; Singh HD; Mathur RK; Baruah JN; Iyengar MS
    Indian J Exp Biol; 1974 Mar; 12(2):158-61. PubMed ID: 4215747
    [No Abstract]   [Full Text] [Related]  

  • 3. [Oxidation of naphthalene and salicylic acid by bacteria of the genus Pseudomonas].
    Tin'ianova NZ; Kvasnikov EI
    Mikrobiol Zh; 1973; 35(5):550-3. PubMed ID: 4205963
    [No Abstract]   [Full Text] [Related]  

  • 4. Dialysis fermentation. I. Enhanced production of salicylic acid from naphthalene by Pseudomonas fluorescens.
    Abbott BJ; Gerhardt P
    Biotechnol Bioeng; 1970 Jul; 12(4):577-82 passim. PubMed ID: 5482894
    [No Abstract]   [Full Text] [Related]  

  • 5. [Naphthalene oxidating bacteria--producers of salicylic acid].
    Kvasnikov EI; Tin'ianova NZ
    Mikrobiol Zh; 1971; 33(4):417-22. PubMed ID: 5153977
    [No Abstract]   [Full Text] [Related]  

  • 6. Microbial oxidation of naphthalene. I. Factors concerning salicylate accumulation.
    KLAUSMEIER RE; STRAWINSKI RJ
    J Bacteriol; 1957 Apr; 73(4):461-4. PubMed ID: 13428675
    [No Abstract]   [Full Text] [Related]  

  • 7. Degrade naphthalene using cells immobilized combining with low-intensity ultrasonic technique.
    Wang B; Wang Q; Liancai Z; Fengwei Y
    Colloids Surf B Biointerfaces; 2007 May; 57(1):17-21. PubMed ID: 17284354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Thermosensitivity of naphthalene biodegradation plasmids].
    Kochetkov VV; Boronin AM
    Mikrobiologiia; 1983; 52(1):27-32. PubMed ID: 6405131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salicylate formation from naphthalene by Pseudomonas aeruginosa.
    Modi VV; Patel RN
    Appl Microbiol; 1968 Jan; 16(1):172-3. PubMed ID: 4965913
    [No Abstract]   [Full Text] [Related]  

  • 10. [Comparative study of the plasmids controlling naphthalene biodegradation by a Pseudomonas culture].
    Kochetkov VV; Boronin AM
    Mikrobiologiia; 1984; 53(4):639-44. PubMed ID: 6434909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of naphthalene to salicylic acid by cultures of Pseudomonas denitrificans and Achromobacter sp. from the effluents of petroleum refinery.
    Martonová M; Skárka B; Radĕj Z
    Folia Microbiol (Praha); 1972; 17(1):63-5. PubMed ID: 5061369
    [No Abstract]   [Full Text] [Related]  

  • 12. Degradation of naphthalene by a Pseudomonas strain NGK1.
    Manohar S; Karegoudar TB
    Indian J Exp Biol; 1995 May; 33(5):353-6. PubMed ID: 7558195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Swinging effect of salicylic acid on the accumulation of polyhydroxyalkanoic acid (PHA) in Pseudomonas aeruginosa BM114 synthesizing both MCLandSCL-PHA.
    Rho JK; Choi MH; Shim JH; Lee SY; Woo MJ; Ko BS; Chi KW; Yoon SC
    J Microbiol Biotechnol; 2007 Dec; 17(12):2018-26. PubMed ID: 18167450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Isolation and evaluation of the mutant strain of Pseudomonas aeruginosa 640x (pBS2) capable of naphthalene catabolism at increased temperatures].
    Grishchenkov VG; Boronin AM
    Izv Akad Nauk SSSR Biol; 1983; (1):157-60. PubMed ID: 6402537
    [No Abstract]   [Full Text] [Related]  

  • 15. [Naphthalene-assimilating bacteria of Pseudomonas genus from soils of oil-bearing fields and their properties].
    Kvasnikov EI; Tin'ianova NZ
    Mikrobiologiia; 1974; 43(4):710-4. PubMed ID: 4453216
    [No Abstract]   [Full Text] [Related]  

  • 16. [Effect of transposons on expression of genes for naphthalene biodegradation in Pseudomonas putida BS202(NPL-1) and derivative strains].
    Sokolov SL; Kosheleva IA; Filonov AE; Boronin AM
    Mikrobiologiia; 2005; 74(1):79-86. PubMed ID: 15835782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanogram amounts of salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 activate the systemic acquired resistance pathway in bean.
    De Meyer G; Capieau K; Audenaert K; Buchala A; Métraux JP; Höfte M
    Mol Plant Microbe Interact; 1999 May; 12(5):450-8. PubMed ID: 10226378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Derivation of the Tn5-induced mutants of the plasmid-containing naphthalene- and salicylate-degrading strains of Pseudomonas putida BS394(pBS216) and the inhibition of their growth on different substrates by low temperatures].
    Grishchenkov VG; Radzion AA; Medvedev PA; Balina MI; Boronin AM
    Mikrobiologiia; 2004; 73(3):430-2. PubMed ID: 15315239
    [No Abstract]   [Full Text] [Related]  

  • 19. [Oxidation characteristics of the aromatic acids formed in DDT breakdown by a Pseudomonas aeruginosa culture].
    Pertsova RN; Baskunov BP; Golovleva LA
    Mikrobiologiia; 1982; 51(2):275-80. PubMed ID: 6806578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pseudomonas putida strain PCL1444, selected for efficient root colonization and naphthalene degradation, effectively utilizes root exudate components.
    Kuiper I; Kravchenko LV; Bloemberg GV; Lugtenberg BJ
    Mol Plant Microbe Interact; 2002 Jul; 15(7):734-41. PubMed ID: 12118890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.