These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 4215871)

  • 1. Axonal growth and organization of the mamillary nuclei of the newborn mouse in culture.
    Sobkowicz HM; Bleier R; Bereman B; Monzain R
    J Neurocytol; 1974 Oct; 3(4):431-47. PubMed ID: 4215871
    [No Abstract]   [Full Text] [Related]  

  • 2. Aberrant axonal projections from mammillary bodies in Pax6 mutant mice: possible roles of Netrin-1 and Slit 2 in mammillary projections.
    Tsuchiya R; Takahashi K; Liu FC; Takahashi H
    J Neurosci Res; 2009 May; 87(7):1620-33. PubMed ID: 19115401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of the mammillothalamic tract in normal and Pax-6 mutant mice.
    Valverde F; García C; López-Mascaraque L; De Carlos JA
    J Comp Neurol; 2000 Apr; 419(4):485-504. PubMed ID: 10742717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurons in the rat subiculum with transient postmamillary collaterals during development maintain projections to the mamillary complex.
    Stanfield BB; O'Leary DD
    Exp Brain Res; 1988; 72(1):185-90. PubMed ID: 3139439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of fixation by formaldehyde and glutaraldehyde-formaldehyde for combined light and electron microscopy of axonal degeneration in the mammillary body.
    Baccarini I; Powell EW
    Stain Technol; 1973 Mar; 48(2):77-83. PubMed ID: 4121357
    [No Abstract]   [Full Text] [Related]  

  • 6. [Formation of nerve fibers between organotypic explants of the hippocampus and mammillary bodies of newborn mice].
    Khaspekov LG
    Biull Eksp Biol Med; 1977 Nov; 84(11):626-7. PubMed ID: 412530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study of retrograde cell degeneration in the lateral mammillary nucleus of the cat, with special reference to the role of axonal branching in the preservation of the cell.
    Fry FJ; Cowan WM
    J Comp Neurol; 1972 Jan; 144(1):1-23. PubMed ID: 4623847
    [No Abstract]   [Full Text] [Related]  

  • 8. Descending pathways of the frontal lobe cortex to nuclei of the hypothalamic mamillary bodies in craniocerebral trauma in humans.
    L'vovich AI
    Neurosci Behav Physiol; 2001; 31(4):371-4. PubMed ID: 11508485
    [No Abstract]   [Full Text] [Related]  

  • 9. Convergent prefrontal cortex and mamillary body projections to the medial pontine nuclei: a light and electron microscopic study in the rat.
    Allen GV; Hopkins DA
    J Comp Neurol; 1998 Aug; 398(3):347-58. PubMed ID: 9714148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Perinatal development of mammillotegmental connections in rats].
    Alpeeva EV; Makarenko IG
    Ontogenez; 2007; 38(2):86-93. PubMed ID: 17479531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silver impregnation of degenerating axons; comparisons of postoperative intervals, fixatives and staining methods.
    Powell EW; Schnurr R
    Stain Technol; 1972 Mar; 47(2):95-100. PubMed ID: 4113108
    [No Abstract]   [Full Text] [Related]  

  • 12. Electron microscopic identification of mammillary body terminals in the rat's AV thalamic nucleus by means of anterograde transport of HRP. A quantitative comparison with the EM degeneration and EM autoradiographic techniques.
    Holstege JC; Dekker JJ
    Neurosci Lett; 1979 Feb; 11(2):129-35. PubMed ID: 88693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postnatal development of forebrain regions in the autoimmune NZB-mouse. A model for degeneration in neuronal systems.
    Fink GR; Zilles K; Schleicher A
    Anat Embryol (Berl); 1991; 183(6):579-88. PubMed ID: 1910267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single mammillary body cells with divergent axon collaterals. Demonstration by a simple, fluorescent retrograde double labeling technique in the rat.
    van der Kooy D; Kuypers HG; Catsman-Berrevoets CE
    Brain Res; 1978 Dec; 158(1):189-96. PubMed ID: 21348360
    [No Abstract]   [Full Text] [Related]  

  • 15. Certain ventromedial hypothalamic afferents.
    Millhouse OE
    Brain Res; 1973 May; 55(1):89-105. PubMed ID: 4197323
    [No Abstract]   [Full Text] [Related]  

  • 16. Spontaneous regeneration of intrinsic spinal cord axons in a novel spinal cord slice culture model.
    Bonnici B; Kapfhammer JP
    Eur J Neurosci; 2008 May; 27(10):2483-92. PubMed ID: 18513321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental hydrocarbons produce degeneration in cat hypothalamus and optic tract.
    Schaumburg HH; Spencer PS
    Science; 1978 Jan; 199(4325):199-200. PubMed ID: 413192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The organization of the lateral posterior nucleus in neonatal golden hamsters.
    Crain BJ; Hall WC
    J Comp Neurol; 1980 Sep; 193(2):371-82. PubMed ID: 7440773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological and electrophysiological evidence for axonal regeneration of axotomized cerebellothalamic neurons in kittens.
    Kawaguchi S; Miyata H; Kawamura M; Harada Y
    Neurosci Lett; 1981 Aug; 25(1):13-8. PubMed ID: 7279300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of melanin-concentrating hormone neurons projecting to the medial mammillary nucleus.
    Casatti CA; Elias CF; Sita LV; Frigo L; Furlani VC; Bauer JA; Bittencourt JC
    Neuroscience; 2002; 115(3):899-915. PubMed ID: 12435428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.