These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 421784)

  • 1. Determinant of efficiency of a monomeric enzyme: acceleration by site-specific molecules for trypsin.
    Tanizawa K; Kanaoka Y
    Experientia; 1979 Jan; 35(1):16-7. PubMed ID: 421784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen and sulfur esters of "inverse substrates": different responses of amidinophenol and amidinothiophenol in the activation of the rate of tryptic hydrolysis of the inverse esters.
    Tanizawa K; Kanaoka Y
    J Biochem; 1985 Jan; 97(1):275-80. PubMed ID: 3997793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative studies on the structure of active sites. Behavior of "inverse substrates" toward trypsin and related enzymes.
    Nozawa M; Tanizawa K; Kanaoka Y
    J Biochem; 1982 Jun; 91(6):1837-43. PubMed ID: 6811567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The kinetics of hydrolysis of some extended N-aminoacyl-l-lysine methyl esters.
    Green GD; Tomalin G
    Eur J Biochem; 1976 Sep; 68(1):131-7. PubMed ID: 986943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding binding selectivity toward trypsin and factor Xa: the role of aromatic interactions.
    Di Fenza A; Heine A; Koert U; Klebe G
    ChemMedChem; 2007 Mar; 2(3):297-308. PubMed ID: 17191291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure reveals basis for the inhibitor resistance of human brain trypsin.
    Katona G; Berglund GI; Hajdu J; Gráf L; Szilágyi L
    J Mol Biol; 2002 Feb; 315(5):1209-18. PubMed ID: 11827488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme substrate and inhibitor interactions.
    Blow DM; Smith JM
    Philos Trans R Soc Lond B Biol Sci; 1975 Nov; 272(915):87-97. PubMed ID: 1820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. "Inverse substrates" for trypsin-like enzymes.
    Nozawa M; Tanizawa K; Kanaoka Y
    J Pharmacobiodyn; 1980 Apr; 3(4):213-9. PubMed ID: 6451682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exogenous acetate reconstitutes the enzymatic activity of trypsin Asp189Ser.
    Perona JJ; Hedstrom L; Wagner RL; Rutter WJ; Craik CS; Fletterick RJ
    Biochemistry; 1994 Mar; 33(11):3252-9. PubMed ID: 8136360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enantiomeric specificity at the deacylation process of tryptic catalysis.
    Tanizawa K; Yamada H; Kanaoka Y
    Biochim Biophys Acta; 1987 Nov; 916(2):205-12. PubMed ID: 3676332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple Ligand Unbinding Pathways and Ligand-Induced Destabilization Revealed by WExplore.
    Dickson A; Lotz SD
    Biophys J; 2017 Feb; 112(4):620-629. PubMed ID: 28256222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies of specificity and catalysis in trypsin by structural analysis of site-directed mutants.
    Sprang SR; Fletterick RJ; Gráf L; Rutter WJ; Craik CS
    Crit Rev Biotechnol; 1988; 8(3):225-36. PubMed ID: 3063392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tyrosine 151 is part of the substrate activation binding site of bovine trypsin. Identification by covalent labeling with p-diazoniumbenzamidine and kinetic characterization of Tyr-151-(p-benzamidino)-azo-beta-trypsin.
    Oliveira MG; Rogana E; Rosa JC; Reinhold BB; Andrade MH; Greene LJ; Mares-Guia M
    J Biol Chem; 1993 Dec; 268(36):26893-903. PubMed ID: 8262923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of zymogen activation.
    Stroud RM; Kossiakoff AA; Chambers JL
    Annu Rev Biophys Bioeng; 1977; 6():177-93. PubMed ID: 17350
    [No Abstract]   [Full Text] [Related]  

  • 15. Kinetic analysis of an autocatalytic process coupled to a reversible inhibition: the inhibition of the system trypsinogen-trypsin by p-aminobenzamidine.
    Manjabacas MC; Valero E; García-Moreno M; Varón R
    Biol Chem Hoppe Seyler; 1995 Sep; 376(9):577-80. PubMed ID: 8561917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of trypsin-catalyzed hydrolysis determined by isothermal titration calorimetry.
    Maximova K; Trylska J
    Anal Biochem; 2015 Oct; 486():24-34. PubMed ID: 26119333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active site mapping of trypsin, thrombin and matriptase-2 by sulfamoyl benzamidines.
    Dosa S; Stirnberg M; Lülsdorff V; Häußler D; Maurer E; Gütschow M
    Bioorg Med Chem; 2012 Nov; 20(21):6489-505. PubMed ID: 23026080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative molecular modeling analysis of-5-amidinoindole and benzamidine binding to thrombin and trypsin: specific H-bond formation contributes to high 5-amidinoindole potency and selectivity for thrombin and factor Xa.
    Zhou Y; Johnson ME
    J Mol Recognit; 1999; 12(4):235-41. PubMed ID: 10440994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induced activation in the deacylation step of tryptic hydrolysis. An application of "inverse substrates" to mechanistic studies of the enzyme.
    Tanizawa K; Kasaba Y; Kanaoka Y
    J Biochem; 1980 Feb; 87(2):417-27. PubMed ID: 7358646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relocating a negative charge in the binding pocket of trypsin.
    Perona JJ; Tsu CA; McGrath ME; Craik CS; Fletterick RJ
    J Mol Biol; 1993 Apr; 230(3):934-49. PubMed ID: 8478942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.