These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 421840)

  • 1. The origin of the instantaneous elasticity in single frog muscle fibres.
    Sugi H; Tameyasu T
    Experientia; 1979 Feb; 35(2):227-8. PubMed ID: 421840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The origin of the series elastic component in single crayfish muscle fibres.
    Tameyasu T; Sugi H
    Experientia; 1979 Feb; 35(2):210-1. PubMed ID: 421833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stiffness changes during enhancement and deficit of isometric force by slow length changes in frog skeletal muscle fibres.
    Sugi H; Tsuchiya T
    J Physiol; 1988 Dec; 407():215-29. PubMed ID: 3256616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tension responses to sudden length change in stimulated frog muscle fibres near slack length.
    Ford LE; Huxley AF; Simmons RM
    J Physiol; 1977 Jul; 269(2):441-515. PubMed ID: 302333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The contractile response during steady lengthening of stimulated frog muscle fibres.
    Lombardi V; Piazzesi G
    J Physiol; 1990 Dec; 431():141-71. PubMed ID: 2100305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Series elasticity in frog muscle as revealed by optical diffraction.
    Barden JA; Mason P
    Aust J Biol Sci; 1982; 35(6):617-27. PubMed ID: 7168711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variation of muscle stiffness with tension during tension transients and constant velocity shortening in the frog.
    Julian FJ; Morgan DL
    J Physiol; 1981; 319():193-203. PubMed ID: 6976429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isotonic velocity transients in frog muscle fibres following quick changes in load.
    Sugi H; Tsuchiya T
    J Physiol; 1981; 319():219-38. PubMed ID: 7320912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tension transients during steady lengthening of tetanized muscle fibres of the frog.
    Piazzesi G; Francini F; Linari M; Lombardi V
    J Physiol; 1992 Jan; 445():659-711. PubMed ID: 1501149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sarcomere length and force changes in single tetanized from muscle fibers following quick changes in fiber length.
    Sugi H; Kobayashi T
    Adv Exp Med Biol; 1984; 170():623-35. PubMed ID: 6741710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of active pre-shortening on isometric and isotonic performance of single frog muscle fibres.
    Granzier HL; Pollack GH
    J Physiol; 1989 Aug; 415():299-327. PubMed ID: 2640463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sarcomere length-tension relations of frog skinned muscle fibres during calcium activation at short lengths.
    Moss RL
    J Physiol; 1979 Jul; 292():177-92. PubMed ID: 314975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relation between stiffness and filament overlap in stimulated frog muscle fibres.
    Ford LE; Huxley AF; Simmons RM
    J Physiol; 1981 Feb; 311():219-49. PubMed ID: 6973625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dependence of the shortening heat on sarcomere length in fibre bundles from frog semitendinosus muscles.
    Yamada K; Kometani K
    Adv Exp Med Biol; 1984; 170():853-64. PubMed ID: 6741721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of stretching on the elastic characteristics and the contractile component of frog striated muscle.
    Cavagna GA; Citterio G
    J Physiol; 1974 May; 239(1):1-14. PubMed ID: 4368635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The energetics of work and heat production by single muscle fibres from the frog.
    Woledge RC; Wilson MG; Howarth JV; Elzinga G; Kometani K
    Adv Exp Med Biol; 1988; 226():677-88. PubMed ID: 3407537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Latency relaxation and short-range elasticity in single muscle fibres of the frog.
    Haugen P
    Acta Physiol Scand Suppl; 1983; 519():1-48. PubMed ID: 6359819
    [No Abstract]   [Full Text] [Related]  

  • 18. Maximum velocity of shortening related to myosin isoform composition in frog skeletal muscle fibres.
    Edman KA; Reggiani C; Schiaffino S; te Kronnie G
    J Physiol; 1988 Jan; 395():679-94. PubMed ID: 2970539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intersarcomere dynamics during fixed-end tetanic contractions of frog muscle fibres.
    Julian FJ; Morgan DL
    J Physiol; 1979 Aug; 293():365-78. PubMed ID: 315464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isometric tension and instantaneous stiffness in amphibian skeletal muscle exposed to solutions of increased tonicity.
    Bressler BH
    Can J Physiol Pharmacol; 1977 Oct; 55(5):1208-10. PubMed ID: 411558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.