These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 4218492)

  • 41. Regulation of histidine biosynthesis in Salmonella typhimurium.
    Goldberger RF; Kovach JS
    Curr Top Cell Regul; 1972; 5():285-308. PubMed ID: 4587830
    [No Abstract]   [Full Text] [Related]  

  • 42. Biosynthesis of bacillomycin D by Bacillus subtilis. Evidence for amino acid-activating enzymes by the use of affinity chromatography.
    Besson F; Michel G
    FEBS Lett; 1992 Aug; 308(1):18-21. PubMed ID: 1644198
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Anacystis nidulans mutants resistant to aromatic amino acid analogues.
    Phares W; Chapman LF
    J Bacteriol; 1975 Jun; 122(3):943-8. PubMed ID: 125268
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Regulation of a serine transfer RNA of Bacillus subtilis under two growth conditions.
    Doi RH; Kaneko I; Goehler B
    Proc Natl Acad Sci U S A; 1966 Nov; 56(5):1548-51. PubMed ID: 4961689
    [No Abstract]   [Full Text] [Related]  

  • 45. Bacillus subtilis bacteriophage SP01, SP82, and phi e require host lysyl- and tryptophanyl-tRNA synthetases for phage development.
    Racine FM; Steinberg W
    J Virol; 1974 Aug; 14(2):402-6. PubMed ID: 4211168
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Aminoacylation of tRNA Trp from beef liver, yeast and E. coli by beef pancrease tryptophan-tRNA ligase. Stoichiometry of tRNATrp binding.
    Dorizzi M; Merault G; Fournier M; Labouesse J; Keith G; Dirheimer G; Buckingham RH
    Nucleic Acids Res; 1977 Jan; 4(1):31-42. PubMed ID: 17096
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Aminoacylation of RNA minihelices: implications for tRNA synthetase structural design and evolution.
    Buechter DD; Schimmel P
    Crit Rev Biochem Mol Biol; 1993; 28(4):309-22. PubMed ID: 7691478
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Selective incorporation of host cell methionyl-transfer RNA by RNA tumor viruses.
    Wang S; Kothari RM; Taylor MW; Hung PP
    Biochim Biophys Acta; 1974 Feb; 340(1):52-63. PubMed ID: 4363121
    [No Abstract]   [Full Text] [Related]  

  • 49. Changes in transfer ribonucleic acids of Bacillus subtilis during different growth phases.
    Singhal RP; Vold B
    Nucleic Acids Res; 1976 May; 3(5):1249-62. PubMed ID: 821040
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Involvement of the anticodon region of Escherichia coli tRNAGln and tRNAGlu in the specific interaction with cognate aminoacyl-tRNA synthetase. Alteration of the 2-thiouridine derivatives located in the anticodon of the tRNAs by BrCN or sulfur deprivation.
    Seno T; Agris PF; Söll D
    Biochim Biophys Acta; 1974 May; 349(3):328-38. PubMed ID: 4366808
    [No Abstract]   [Full Text] [Related]  

  • 51. Chromosomal location of DNA base sequences complementary to transfer RNA and to 5 s, 16 s and 23 s ribosomal RNA in Bacillus subtilis.
    Smith I; Dubnau D; Morrell P; Marmur J
    J Mol Biol; 1968 Apr; 33(1):123-40. PubMed ID: 4967203
    [No Abstract]   [Full Text] [Related]  

  • 52. Transfer ribonucleic acid of vitamin A-deficient rats.
    Tryfiates GP; Krause RF; Shuler JK
    Am J Clin Nutr; 1973 Jan; 26(1):41-7. PubMed ID: 4682815
    [No Abstract]   [Full Text] [Related]  

  • 53. Separability of enzymes of the common aromatic biosynthetic pathway in Mycobacterium phlei.
    Yapo A; Catala F; Azerad R
    Biochimie; 1974; 56(8):1145-6. PubMed ID: 4447810
    [No Abstract]   [Full Text] [Related]  

  • 54. Amino acid metabolism.
    Truffa-Bachi P; Cohen GN
    Annu Rev Biochem; 1973; 42(0):113-34. PubMed ID: 4151747
    [No Abstract]   [Full Text] [Related]  

  • 55. Evidence of "three point" attachment of tRNA to methionyl tRNA synthetase.
    Dube SK
    Nat New Biol; 1973 May; 243(125):103-5. PubMed ID: 4575301
    [No Abstract]   [Full Text] [Related]  

  • 56. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases.
    Sherlin LD; Bullock TL; Newberry KJ; Lipman RS; Hou YM; Beijer B; Sproat BS; Perona JJ
    J Mol Biol; 2000 Jun; 299(2):431-46. PubMed ID: 10860750
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In vivo aminoacylation of transfer ribonucleic acid in Bacillus subtilis and evidence for differential utilization of lysine-isoaccepting transfer ribonucleic acid species.
    Tockman J; Vold BS
    J Bacteriol; 1977 Jun; 130(3):1091-7. PubMed ID: 193829
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Studies of the mechanism of action of the antitumor agent 5(4)-(3,3-dimethyl-1-triazeno) imidazole-4(5)-carboxamide in Bacillus subtilis.
    Saunders PP; Schultz GA
    Biochem Pharmacol; 1970 Mar; 19(3):911-9. PubMed ID: 4994358
    [No Abstract]   [Full Text] [Related]  

  • 59. Analysis of RNA turnover in bacteria using histidine as a radioactivity trap for (2-H)adenine nucleotides.
    Burton K
    J Mol Biol; 1976 Apr; 102(2):333-48. PubMed ID: 818393
    [No Abstract]   [Full Text] [Related]  

  • 60. Citrate-Mg2+ transport in Bacillus subtilis. Studies with 2-fluoro-L-erythro-citrate as a substrate.
    Oehr P; Willecke K
    J Biol Chem; 1974 Apr; 249(7):2037-42. PubMed ID: 4206548
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.