These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 4218798)

  • 1. Effects of ablating the striate cortex on a successive pattern discrimination:further study of the visual system in the tree shrew (Tupaia glis).
    Ware CB; Diamond IT; Casagrande VA
    Brain Behav Evol; 1974; 9(4):264-79. PubMed ID: 4218798
    [No Abstract]   [Full Text] [Related]  

  • 2. Dual function of the tectum in the tree shrew (Tupaia glis).
    Casagrande VA
    Neurosci Res Program Bull; 1975 May; 13(2):251-3. PubMed ID: 808755
    [No Abstract]   [Full Text] [Related]  

  • 3. X- and Y-cells in the dorsal lateral geniculate nucleus of the tree shrew (Tupaia glis).
    Sherman SM; Norton TT; Casagrande VA
    Brain Res; 1975 Jul; 93(1):152-7. PubMed ID: 806329
    [No Abstract]   [Full Text] [Related]  

  • 4. Nonintralaminar thalamostriatal projections in the gray squirrel (Sciurus carolinensis) and tree shrew (Tupaia glis).
    Lin CS; May PJ; Hall WC
    J Comp Neurol; 1984 Nov; 230(1):33-46. PubMed ID: 6096412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Function of striate and temporal cortex in the tree shrew.
    Killackey H; Snyder M; Diamond IT
    J Comp Physiol Psychol; 1971 Jan; 74(1):Suppl 2:1-29. PubMed ID: 5577168
    [No Abstract]   [Full Text] [Related]  

  • 6. Organization of ocular dominance in tree shrew striate cortex.
    Humphrey AL; Albano JE; Norton TT
    Brain Res; 1977 Oct; 134(2):225-36. PubMed ID: 407978
    [No Abstract]   [Full Text] [Related]  

  • 7. Receptive field properties of optic tract fibres from on-center sustained and transient cells in a tree shrew (Tupaia chinensis).
    ter Laak HJ; Thijssen JM
    Vision Res; 1978; 18(9):1097-109. PubMed ID: 102077
    [No Abstract]   [Full Text] [Related]  

  • 8. Organization of the visual afferents into the LGd and the pulvinar of the tree shrew Tupaia glis.
    Ohno T; Misgeld U; Kitai ST; Wagner A
    Brain Res; 1975 Jun; 90(1):153-8. PubMed ID: 805632
    [No Abstract]   [Full Text] [Related]  

  • 9. Functional classification of cells in the optic tract of a tree shrew (Tupaia chinensis).
    van Dongen PA; ter Laak HJ; Thijssen JM; Vendrik AJ
    Exp Brain Res; 1976 Feb; 24(4):441-6. PubMed ID: 816664
    [No Abstract]   [Full Text] [Related]  

  • 10. Laminar organization of ON and OFF regions and ocular dominance in the striate cortex of the tree shrew (Tupaia belangeri).
    Kretz R; Rager G; Norton TT
    J Comp Neurol; 1986 Sep; 251(1):135-45. PubMed ID: 3760256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deoxyglucose mapping of the orientation column system in the striate cortex of the tree shrew, Tupaia glis.
    Skeen LC; Humphrey AL; Norton TT; Hall WC
    Brain Res; 1978 Mar; 142(3):538-45. PubMed ID: 638750
    [No Abstract]   [Full Text] [Related]  

  • 12. Topographic organization of the orientation column system in the striate cortex of the tree shrew (Tupaia glis). II. Deoxyglucose mapping.
    Humphrey AL; Skeen LC; Norton TT
    J Comp Neurol; 1980 Aug; 192(3):549-66. PubMed ID: 7419744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The functions of prefrontal cortex in the tree shrew (Tupaia belangeri).
    Passingham R
    Brain Res; 1978 Apr; 145(1):147-52. PubMed ID: 416886
    [No Abstract]   [Full Text] [Related]  

  • 14. Effects of prestriate and striate lesions on the monkey's ability to locate and discriminate visual forms.
    Keating EG
    Exp Neurol; 1975 Apr; 47(1):16-25. PubMed ID: 1123005
    [No Abstract]   [Full Text] [Related]  

  • 15. Definition of neural response and incremental sensitivity of retinal ganglion cells in a tree shrew (Tupaia chinensis).
    ter Laak HJ; Thijssen JM
    Vision Res; 1979; 19(8):885-9. PubMed ID: 117626
    [No Abstract]   [Full Text] [Related]  

  • 16. Encephalization and visual cortex in the Tree Shrew (Tupaia glis).
    Ward JP; Masterton B
    Brain Behav Evol; 1970; 3(5):421-69. PubMed ID: 5522096
    [No Abstract]   [Full Text] [Related]  

  • 17. Topology of ON and OFF inputs in visual cortex enables an invariant columnar architecture.
    Lee KS; Huang X; Fitzpatrick D
    Nature; 2016 May; 533(7601):90-4. PubMed ID: 27120162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of striate lesions on visually evoked activity in tree shrew temporal cortex.
    Kaufmann PG; Blum PS; Somjen GG
    Brain Res Bull; 1979; 4(3):327-32. PubMed ID: 487188
    [No Abstract]   [Full Text] [Related]  

  • 19. Layer I of striate cortex of Tupaia glis and Galago senegalensis: projections from thalamus and claustrum revealed by retrograde transport of horseradish peroxidase.
    Carey RG; Fitzpatrick D; Diamond IT
    J Comp Neurol; 1979 Aug; 186(3):393-437. PubMed ID: 110851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebellar corticonuclear - nucleocortical topography: a study of the tree shrew (Tupaia) paraflocculus.
    Haines DE; Pearson JC
    J Comp Neurol; 1979 Oct; 187(4):745-58. PubMed ID: 90685
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.